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Abstract—This paper is a work-in-progress.
This paper describes & evaluates a fast, hybrid im-

plementation of the Advanced Encryption Standard with
256 bit keys (AES-256) block encryption in Galois/Counter
Mode (GCM). The implementation is bit-compatible with
the implemented standard in both the OpenSSL and
Crypto++ libraries, while significantly (up to three times)
faster for large amount of data. In this implementation,
a fast AES encryption function written in CUDA is
combined with a fast GCM hash function written in ARM
NEON intrinsics. The two are combined to execute as
asynchronously as possible to maximize throughput. The
full code and latest version of this paper are available from
http://www.dolbeau.name/dolbeau/crypto/.
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I. INTRODUCTION

In today’s world, encryption and authentication of
data have become an important aspect of network
communications. Speed in this domain is crucial, as
the usually compute-intensive cryptographic algorithms
can quickly become a bottleneck for communication
speed. In this paper, we describe and evaluate a fast
implementation of the standard AES-256-GCM algo-
rithm for Authenticated-encryption with Associated-data
(AEAD [1]), targeted at system featuring an ARM core
with NEON SIMD instructions and a CUDA-enabled
GPU. GPUs are highly parallel compute engines, and
therefore quite suited to many data-parallel workload.
Leveraging such parallel power help improves compute
efficiency and raw speed.

AES[2][3] with 256 bit keys (the work in this paper
can be leveraged to any key size, but the larger key
are more compute-intensive) is a block cipher. GCM
(described by McGrew & Viega in [4] with a NIST
recommendation by Dworkin in [5]) is a mode of op-
eration for block cipher to create an AEAD algorithm

from a block cipher. The standard mode of operation
of AES-256-GCM is such that all encrypted blocks
can be computed in parallel (in a fashion similar to
the counter (CTR) mode of operation [6]). The XOR
process of the encrypted data and the encrypted block is
also parallel, each block only depend on a single AES
block. The GCM hash function itself is sequential on
each encrypted-and-xored block during the encryption
phase. Figure 1 represents the dependency chains (red
arrows denoting a dependence from one block upon
another) between the computation of AES blocks (in
blue), the XORing between AES blocks and encrypted
data (in purple) and the computation of GCM hash (in
green). Additional Authentication Data (AAD) are only
hashed, not encrypted, a process which must take place
prior to the hashing of the encrypted data since the
output of the hash function on the last block of AAD
is an input to the hash function on the first block of
encrypted data. The output of the encryption algorithm
is all the XORed blocks (purple) and the output of the
last GCM block (last green) as a hash value. During
the decryption & validation phase, the parallel aspect
of AES and the sequential aspect of GCM remain.
However, since encrypted data is available immediately,
the hash function is not dependant on the result of the
decryption phase (as shown in figure 2). The output
of the decryption algorithm is all the XORed blocks
(purple) and the output of the last GCM block (last
green) for validating the hash value.

Because of such parallelism, the global scheme used to
implement AES-256-GCM is to compute the AES blocks
in parallel on the GPU and the sequential GCM blocks
on the CPU. AAD can always be hashed in parallel of
the AES computation. AES data have to be streamed
back from the GPU to the CPU before the GCM phase
during encryption, but can also be done in parallel during
decryption.

The structure of this paper is as follows. After men-
tioning related work, we first present a description of the

http://www.dolbeau.name/dolbeau/crypto/


Fig. 1. Dependency chains between blocks in AES-GCM encryption
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Fig. 2. Dependency chains between blocks in AES-GCM decryption
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multiple AES implementation tested on the GPU. Then
comes a brief description of the GCM implementation
using NEON instruction. We finish with performance
evaluation of the entire AES-256-GCM algorithm with
or without AAD.

The full code and latest version of this paper are avail-
able from http://www.dolbeau.name/dolbeau/crypto/.

II. RELATED WORK

AES on GPU is nothing new, as it was already
described in the book GPU Gems 3 [7] (chapter 36 is
available online1) in 2007. The book already described
the fact that the Electronic CodeBook (ECB) mode
was unsafe, and that Cipher-Block Chaining (CBC) was
not parallel. Multiple authors have tackled the issue of
implementing AES on GPU since the release of the
CUDA framework, among which Manavski [8], Bos et
al. [9], Tomoiagă et al. [10][11], Li et al. [12], Iwai et
al. [13], So-In et al. [14], and more.

AES in GCM mode has not received such an ex-
tensive body of work. Schönberger & Fuß [15] have
implemented it using the same distribution of work

1http://http.developer.nvidia.com/GPUGems3/gpugems3 ch36.
html

between CPU and GPU. However, there is no precise
description of the GPU or CPU code used. Additionally,
the Intel CPU used did not support Intel instructions ded-
icated to AES, which achieve both high-performance and
constant-time encryption (thus avoiding timings attacks
when running AES on the CPU).

It seems most if not all published work involving
GPU compare high-end GPU or even dedicated Tesla2

accelerators to high-end desktop or server processors. In
this work, we compare a embedded/mobile CPU to the
same CPU accelerated by its built-in mobile GPU, the
Tegra K13.

To ensure reliability of the code, every implementation
benchmarked is validated against both the OpenSSL
and Crypto++ libraries. In the GCM case, the interface
used is that of the supercop11 benchmark for AEAD
algorithms for encryption and decryption.

III. AES IN CUDA

A. Introduction

Rather than describe the specific implementation that
seems optimal on the GPU included in the Tegra K13, we
describe here every approach considered for every step
of the algorithm. The C code uses the preprocessor to
build the kernel functions, thus allowing every possible
combinations of approach to be built with minimal code
duplication.

NVidia GPUs supporting CUDA come in many fla-
vors, with wildly different architectures. Such architec-
tures are described by NVidia by “Compute Capabili-
ties”, a set of specifications that is common to several
model of GPUs (currently described in Appendix G4

of the Cuda C Programming Guide). More information
about the CUDA programming model5 can be found
starting at NVidia official page6.

The original set of hardware supporting CUDA has
Compute Capabilities 1.0 (CC1.0), such as the Tesla
C870 and GeForce 8800GTX. This was quickly update
to CC1.1 in the GeForce 8800GT, and later to CC1.3
which introduced double-precision floating-point sup-
port. Currently, three main families are available: CC2.0
and CC2.1 (code-name “Fermi”), CC3.0, CC3.2 and

2http://www.nvidia.com/object/tesla-supercomputing-solutions.
html

3http://www.nvidia.com/object/tegra-k1-processor.html
4http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.

html#compute-capabilities
5http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.

html#programming-model
6http://www.nvidia.com/object/cuda home new.html
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CC3.5 (code-name “Kepler”[16]) and CC5.0 (code-name
“Maxwell”). Despite similar numbers, the specific CC is
quite an important consideration. For instance, CC2.0
has large amount of double-precision hardware and can
emit one instruction per cycle per scheduler, while 2.1
has a low amount of double-precision hardware and emit
two instructions per cycle per scheduler. In the Kepler
family that is the basis for the Tegra K1 GPU, CC3.0 is
limited to 63 32-bits wide register per CUDA “thread”
(same as CC2.x), while CC3.2 and CC3.5 can use up to
255 registers per “thread”. CC3.0 also lacks the “funnel
shifter” found in CC3.2 and CC3.5, an useful feature for
cryptography since it allows single-instruction rotation of
32-bits registers.

It is therefore quite conceivable that the “best” im-
plementation will be very architecture-specific or even
GPU-specific, due to the varying tradeoffs in avail-
able instructions, available registers, memory bandwidth,
memory sensitivity to access patterns7, inter-“thread”
shuffling of data8, latency and bandwidth of the “shared”
memory9, the type and cost of bank conflicts in said
“shared” memory, and so on.

The standard AES description [3] involves four steps
for each AES round: SubBytes (commonly known by the
data structure name S-Box), ShiftRows, MixColumns and
AddRoundKey, all of which have been largely studied
for optimizations on CPU such as by the AES inventors
themselves, Bertoni et al. [17] and others, including
implementors. In GCM mode, since the input data is not
used as input to the block cipher but XORed with the
output of the cipher, an extra XORing step after all AES
rounds is to be considered. Also, as GPU have specific
requirements for efficient “global” memory accesses,
GPU implementation must also considers the Loading
of inputs and Storing of results steps after the rounds.
The following subsections describe the steps and the
implementation opportunities on GPU.

A common optimization in CUDA (or with OpenCL)
is to tweak the block size (and so the grid size). In the
current implementations, only a block size of 256 CUDA
“threads” per CUDA “block” is considered. The reason
is the presence of several tables of 256 entries, which

7http://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html#global-memory-2-x, http://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#global-memory-3-0

8http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.
html#warp-shuffle-functions

9http://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html#shared-memory-2-x, http://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#shared-memory-3-0

are trivially loaded in “shared” memory when using 256
threads. Lower number of threads would require multiple
loads, whereas a large number of threads would require
conditionals. Studying the effect of changing the block
size is nonetheless of interest as a lower number of
blocks would put less pressure on “shared” memory.
That is not currently an issue for our implementations
on Fermi (where an occupancy of 1.000 can be achieved
with up to 8 KiB of “shared” memory per 256-threads
block), but could be a small issue on Kepler (where
an occupancy of 1.000 can be achieved with only up
to 6 KiB of “shared” memory per 256-threads block).
Studying the effect of changing the block size should be
part of our future work.

B. Loading

The loading of data when using AES for direct en-
cryption is at the beginning of the cipher, as the data
themselves are encrypted. For mode such as CTR and
GCM, the loading is only necessary immediately prior
to the XORing step, as only a nonce or input vector (IV)
and a counter are encrypted.

In both case, each AES block of 16 bytes has to be
loaded. Here comes the first consideration: how many
CUDA “threads” are going to be used to implement the
block cipher. The most obvious answer is one, leading
to 16 consecutive bytes of data being loaded for each
thread. Two or four threads are also possible, sharing
the workload but requiring inter-threads data exchange
during the AES rounds. All three opportunities have been
tested, although most of the test have been done with the
seemingly more efficient first solution of one thread per
block.

The 16 consecutive bytes per thread is an issue for
optimal memory performance on GPU, as it is a sub-
optimal memory access pattern. A straightforward im-
plementation of each thread loading each of the needed
32 bits in sequence would create a non-consecutive
access pattern. It is better for consecutive “threads”
to access consecutive elements in “global” memory, a
process known as “coalescing”. Three implementations
are considered for this step:

1) The straightforward implementation. “Global”
memory access is not very efficient, but has no
additional resource requirements;

2) Reorganizing memory accesses using the “shared”
memory. This is most common way of handling
such data pattern in CUDA. “Global” memory
access is very efficient, but a large amount of
“shared” memory is required (4 KibiBytes for a
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256 threads block) along with writing and reading
to said “shared memory”;

3) Reorganizing memory accesses using the inter-
“thread” data shuffling available in “Kepler”
(CC3.X) and later architecture. “Global” memory
access is very efficient. While there is an overhead
using the shuffling functions, no extra “shared”
memory is required in this case. However, this is
not usable on “Fermi” and earlier architectures.10

C. SubBytes (a.k.a. S-Box)

The substitution step replace each byte in the 16 bytes
state of AES by the value in a 256 bytes look-up table,
the AES S-Box. While the data inside the S-Box can
be computed, the process is extremely computationally
complex and it is not practically feasible to avoid the
table look-ups during the algorithm, unless dedicated
instructions exist in the hardware such as Intel’s AES-NI.
Such look-ups in memory cause issue even for security
in addition to performance, as the cache behavior might
allow timings attacks (e.g. Bernstein in [18]).

In practice, on GPU, the most efficient way for such
random access to a small table is to pre-load the entire
table in “shared” memory. This is far from perfect: it is
conceivable that “shared” memory bank conflicts have
timing issue that could be exploited, and those conflicts
can be measured by hardware counter that also could be
leveraged against the implementation.

We considered several possible implementations:

1) Only the standard AES S-Box is exploited. This
can be either by using a standard 256 bytes table,
or using a 1024 bytes tables putting each 8 bits
value in its own 32 bits word - either could be
better or worse than each other due to memory
banking.

2) In addition to the standard S-Box, one to four 1024
bytes Forward Table are loaded in shared memory.
Such Forward Table are described in paragraph
5.1.2 of [2], and combine the SubBytes, ShiftRows
and MixColumns step in look-ups in the tables and
full 32-bit XOR operation. As the last three tables
are rotation of the first, is is possible to only use
one or two tables combined with extra rotations.
Those rotations are of 8, 16 or 24 bits and therefore
can be implemented either with a true rotation (or

10Our code contains substitution functions using the “shared” mem-
ory to use this implementation on “Fermi”-class GPU, effectively
creating an alternative implementation trade-offs between size and
number of load/stores for the “shared” memory case.

failing that two shifts and a (X)OR) or a byte
permutation instruction.

D. ShiftRows

This diffusion step only rotates each of the 4 lines
of 4 bytes by full bytes. This is seldom explicitly
implemented, as it can easily be merged with the pre-
vious (when implementing the substitution, the looked-
up bytes are inserted in the rotated position instead of
the starting position) or the next (by changing the read
index). Obviously, it is not used when the Forward Tables
are used.

E. MixColumns

This step is another diffusion step, but this time
implementation is more complex, as in theory it involves
multiplications in GF (28). In practice, as the matrix used
only contains ones, twos and threes, the multiplication
can be implemented by shifting, XORing and overflow
testing.

This step can be merged in the Forward Table. If it
isn’t, then there is several ways to implement it.

1) 8 bits operations. Each byte is recomputed inde-
pendently after extraction, and reinserted. This will
include the ShiftRows step in the extraction part.

2) 32 bits operations. The GF (28) multiplications
and additions (XOR) are made by group of four
inside 32-bits registers. The ShiftRows step is done
first (unless merged in the SubBytes step), followed
by times two multiplications, followed by the
required additions. Finally the data are reorganized
into the proper structure prior to the AddRoundKey
step.

3) 32 bits operations on reorganized data. Same prin-
ciple, but the data are not reorganized at the end,
and the input is expected in the same “diagonal-
ized” format. This requires to pre-“diagonalize”
the subkeys (but only once for all AES blocks),
but saves permutations for every AES rounds.

F. AddRoundKey

This step is simply XORing the round subkey with the
current data. Even for the “diagonalized” MixColumns
step which requires a specific format for the subkeys,
this is just a XOR operation.

G. XORing

Another extremely simple step, used only in CTR and
GCM mode. Input data and the output of the cipher
are xored together. However, computing this on the



GPU requires the data on the GPU, using a potentially
expensive cudaMemcpy API call. It is possible instead
to not send the data to the GPU and computes the
XORing along with the GCM computation on the CPU
instead.

H. Storing

This is to store in “global” memory either the results
of the ciphers or of the XORing of the cipher output
with the input data. This is the same issue, with the
same solutions, as the Loading step.

IV. GCM IN NEON

The Galois/Counter Mode (GCM)[4][5] is a relatively
expensive operation in software, due to its reliance
on multiplication in the Galois field GF (2128). Since
performance of GCM is critical to many cryptographic
libraries, many implementations exists. On Intel and
compatible processor, the instruction pclmulqdq is a
very efficient building block as described by Gueron
in [19]. Implementations exploiting the instructions when
available are available in libraries such as OpenSSL [20]
or Crypto++ [21], and along many more cryptographic
implementations in the supercop11 benchmark, part of
eBACS [22].

For our particular implementation, we used not assem-
bly code but built-in functions from the compiler12 to
access specific single-instruction multiple-data (SIMD,
a.k.a. “vector”) instructions from the NEON extension
to the ARM architecture (whose suitability for high-
performance cryptography was studied by Bernstein
et al. in [23]). Rather than reinvent the wheel, we
implemented the efficient algorithm invented for this
very purpose by Câmara et al. in [24]. Specifically, we
reimplemented Algorithm 6 and used it as a building
block for the full GCM hash.

Tables 3 and 4 show performance values for several
GCM implementations for various hardware, hashing
4 MiB and 128 MiB respectively. The first halves or
each table are in a synthetic benchmark, the second
halves are AES-256-GCM with no encrypted data (only
associated data, so AES is not involved). ref. impl. is
the C-only reference implementation from supercop11.
The three pclmul lines are implementations using Intel’s

11http://bench.cr.yp.to/supercop.html
12The supercop11 benchmark includes both assembly and higher-

level implementations using built-in functions (a.k.a “intrinsics”) of
many algorithms, showing that assembly coding is not required for
high performance. However, the performance is then heavily reliant
on the compiler, since the compiler is responsible for e.g. instructions
scheduling and registers allocation.

pclmulqdq instructions, with three level of unrolling.
Unrolling allows for a more efficient implementation
of GCM by factorizing some computations, at the cost
of additional pre-computations (details are available
in [25] and [19]). The last two are Crypto++ and
OpenSSL. The hardware includes the Cortex A15 core
from Jetson TK1; Core i7-920 (“Nehalem”, without the
pclmulqdq instruction); Xeon X5650 (“Westmere”,
which introduced the cryptographic instructions); and
Core i5-4570S (“Haswell”). As can be seen in the table,
our implementations are competitive on all supported
platforms. OpenSSL still has an edge on the “Haswell”
architecture. Our NEON implementation is faster by a
wide margin than both reference implementations on the
Cortex A1513.

Fig. 3. GCM performance in MB/s for 4 MiB
Implementation Cortex A15 i7-920 X5650 i5-4570S
ref. impl. 4.78 8.05 8.40 10.9
pclmul no unr. 735 1330
pclmul unroll 4 1420 3660
pclmul unroll 8 1430 5000
NEON 176
(pclmul unr. 8) 1420 2670
(NEON) 176
(Crypto++) 135 727 1490 1590
(OpenSSL) 69.3 368 1460 2810

Fig. 4. GCM performance in MB/s for 128 MiB
Implementation Cortex A15 i7-920 X5650 i5-4570S
ref. impl. 4.78 8.00 8.36 10.9
pclmul no unr. 729 1330
pclmul unroll 4 1390 3660
pclmul unroll 8 1400 5170
NEON 174
(pclmul unro 8) 1410 5180
(NEON) 181
(Crypto++) 135 724 1440 3260
(OpenSSL) 69.5 368 1420 5830

V. HYBRID GCM MODE

The interface to use our GCM implementation is from
the supercop11 benchmark. Two functions are imple-
mented, one for encryption and generation of the hash
value, and one for decryption and validation.

A. Encryption

The general principle has been outlined in the intro-
duction. Specifically, the sequence of computation is the
following:

13However, the OpenSSL implementation is faster than ours when
running on the previous generation Cortex A8 core, for which it was
originally designed.

http://bench.cr.yp.to/supercop.html


• AES subkeys are generated on the CPU. If the
GPU implementation requires “diagonalization” of
the key, then this is also done on the CPU;

• Only full CUDA blocks are used, each dealing with
4096 bytes of input data (256 AES block). The size
of the compute grid is computed a this point, along
with how much data will be left for the CPU to
encrypt;

• The required data (subkeys, nonce, counter, and
possibly the input data if the XORing step is done
on the GPU) are sent to the GPU memory;

• Kernel is launched asynchronously on the GPU to
compute AES blocks inside GPU memory;

• All the leftovers data not encrypted by the GPU are
now encrypted and XORed on the CPU (while the
GPU kernel is running);

• All the AAD are hashed on the CPU (while the
GPU kernel is running);

• Encrypted data are recovered from GPU to CPU;
• Encrypted data & final GCM block are hashed on

the CPU; hashing will also handle XORing if that
was not done on the GPU.

We call this implementation “single-call”. Clearly, that
process is suboptimal, since no encrypted data are hashed
while the GPU encryption is going on. An alternative
implementation called “by chunks” can do this by split-
ting the GPU kernel launch into multiple “chunks”. Each
successive “chunk” can then be recovered as soon as
they are finished (using CUDA “events” for GPU-CPU
synchronization), thus allowing pipelining of AES and
GCM computations. Along with the choice of which
compute engine (CPU or GPU) does the XORing, this
creates four different implementations. Of course, any of
the possible kernels described in section III can be used
for the GPU computations.

B. Decryption

The decryption process is quite similar to the encryp-
tion, but with more opportunities for parallelism.

• AES subkeys are generated on the CPU.
• Only full CUDA blocks are used, each dealing with

4096 bytes of input data (256 AES block). The size
of the compute grid is computed a this point, along
with how much data will be left for the CPU to
encrypt (GCM does not require AES decryption,
only encryption of blocks);

• The required data (subkeys, nonce, counter, input
data) are sent to the GPU memory;

• Kernel is launched asynchronously on the GPU to
compute AES blocks inside GPU memory;

• All data are hashed (AAD then encrypted then
final block) on the CPU (while the GPU kernel is
running);

• If the hash is validated, decrypted data are recovered
from GPU to CPU. Otherwise, the decrypted data
in GPU and CPU memory are zeroed instead.

At the moment, only a single variant of the decryption
process is implemented.

VI. PERFORMANCE OF AES-256 IN CTR AND GCM
MODE

Although GCM is the goal, AES in CTR mode uses
exactly the same building blocks to create the GPU
kernels. Note that the Tegra K1 system (a Jetson TK1)
shows performance instability when benchmarking a
large number of kernels, unless the frequency of the
GPU is set (by default the GPU is in power-saving mode
and frequency can change, the procedure is explained
in [26]) . So first we study the AES kernels in CTR
mode on a GPU based on the “Fermi” architecture.
Our host for the “Fermi” card unfortunately does not
support pclmulqdq, so only CTR mode is tested in
that environment.

A. GeForce GT 620 “Fermi”

This is a low-end card of Compute Capabilities 2.1
(details in appendix VII). As a low-power desktop
cards, it does not exhibit any peculiarities in perfor-
mance due to power or thermal constraints. It produces
highly reproducible results from one run to another,
which is convenient for benchmarking a large number
of kernels. The code as of this writing benchmarks 220
different AES kernels based on the one-block-per-thread
approach. In every case, XOR is made on the GPU,
this aspect will be studied in the actual GCM code.
The Loading and Storing stage do not use the inter-
“threads” shuffles, as they are not available on the Fermi
architecture (they represent an extra 55 tests). These tests
are made to evaluate the relative performances of the
various solutions that can be used to implement AES in
CUDA.

Table 5 is an extract from the full results. The columns
are in the order GPU time in milliseconds (sort key), ker-
nel name (with the prefix aes_ctr_cuda_ removed),
number of registers used, amount of “shared” memory
used, and occupancy. The number were obtained via the
command-line profiler, they are not the exact number
seen from the CPU. However, they are more accurate to
compare in-GPU kernel performances.



Fig. 5. AES-CTR kernels on GT620 (extracts)
Time (ms) Kernel regs shared occup.

122629.375 BTB32SRDIAGKEY0 PRMT 8nocoalnocoal 20 520 1.000
123738.594 BTB32SRDIAGKEY0 PRMT 8coalcoal 22 4616 0.833
125767.617 BTB32DIAGKEY0 PRMT 8coalcoal 23 4616 0.833
125792.547 BTB32SRDIAGKEY0 PRMT 8coalnocoal 21 4616 0.833
126205.664 BTB32DIAGKEY0 PRMT 8nocoalcoal 21 4616 0.833

. . . . . . . . . . . . . . .
140236.516 FT INT4 PRMT 8coalcoal 24 8712 0.833
140317.219 FT SEQ4 PRMT 8coalcoal 23 8712 0.833

. . . . . . . . . . . . . . .
141986.375 FT INT1 PRMT 8coalnocoal 22 5640 0.833
142098.938 FT SEQ1 PRMT 8nocoalnocoal 21 1544 0.833

. . . . . . . . . . . . . . .

The fastest implementation - by a very
short margin - is the kernel cryptically named
“BTB32SRDIAGKEY0 PRMT 8nocoalnocoal”. This
is not using any Forward Tables (FTs-using kernels are
denoted by starting with FT_ and the number 1, 2 or
4 prior to the _PRMT token, indicating the number of
tables). This particular kernel uses no explicit coalescing
for either the Loading or Storing step, uses a 8-bits
S-Box table, uses permutation instruction rather than C
code for the very last round (which does not include
the MixColumns step), merge the ShiftRows step into
the SubBytes step, and uses 32-bits operation with
pre-“diagonalized” subkeys for the MixColumns step.
Note that all implementations and the macro to build
them are available in the code.

The second fastest is the same, but using “shared”
memory-based memory coalescing. As can be seen, this
second kernel uses more shared memory than the first
per block. This is actually not a problem in this case.
As can be seen in Appendix A: GeForce GT 620, this
GPU has a limit of 1536 threads per multiprocessor
(SM), 48 KiB of “shared” memory per SM, and at most
32768 registers available per SM. Since all kernels above
uses 256 threads per block, at most 6 blocks can run
simultaneously: an occupancy of 1.000 in CUDA terms.
As long as each block uses less than 8 KiB, “shared”
memory is not a limit. However, for 1536 threads, only
21 registers can be used in each thread for full occupancy
(in practice the limit is 20 as the granularity of allocation
is not one). Since the second kernel needs 22 registers
versus 20 for the first, occupancy drops to 5/6 or 0.833.

The third fastest is the same as the second, but the
ShiftRows is no longer merged with the SubBytes step.
Instead, it uses three explicit permutation to achieve the
same result. The fourth is the second with no coalescing
for the store - so the benefits is lost for stores, but the
cost of allocating and addressing the shared memory is
still here, hence the lower speed (higher time) than the

second-fastest kernel.
The table goes on and on, mostly with the expected

results. Forward Tables are not more efficient than com-
putations on GPU, since they cause many costly “shared”
memory bank conflicts. The number of tables has little
influence, since even with four tables and coalescing
the 48 KiB shared memory still allows up to 0.833
occupancy, the level to which register pressure usually
limits kernels anyway (a recurring issue with Fermi-
based hardware). The cost of rotation associated with
a lower number of tables is also very low thanks to the
single-instruction byte permutation. 32-bits computation
are much faster for the MixColumns step than 8-bits.
Memory coalescing does not offer a significant advan-
tage when accessing the GPU memory, since the orig-
inal pattern is cache-friendly, implementing coalescing
induces overheads, and AES is very compute-intensive
anyway. However, the story is extremely different if
the memory is not the GPU memory, but page-locked
memory (“pinned” memory) on the host - accesses over
the PCI express bus in this case requires coalescing to
avoid an extremely large performance penalty, as shown
by results in figure 6 where the top two kernels have
coalesced Loading and the last two do not. Coalescing
in Loading (enabled in the first and third entry) is much
less dramatic in performance.

Fig. 6. AES-CTR kernels on GT620 in “pinned” memory
Time (ms) Kernel regs shared occup.

123811.875 BTB32SRDIAGKEY0 PRMT 8coalcoal 22 4616 0.833
132751.109 BTB32SRDIAGKEY0 PRMT 8nocoalcoal 22 4616 0.833

1091020.625 BTB32SRDIAGKEY0 PRMT 8coalnocoal 21 4616 0.833
1094071.625 BTB32SRDIAGKEY0 PRMT 8nocoalnocoal20 520 1.000

B. Tegra K1 “Kepler”

The Tegra TK1 System-on-Chip (SoC) includes four
Cortex A15 cores, a low-power companion core (the
Linux kernel only reports four usable cores), and a “Ke-
pler” GPU described in Appendix B: Tegra K1. The SoC
is designed for mobile device, and includes many power-
saving features. Unfortunately, and perhaps because of
those power-saving features, the performance observed
when benchmarking kernels is not reliable. That is, the
same binary using the same data might show different
performance (different time measured by the command-
line profiler) for the same kernel, with variation by a
factor of over 2. It is therefore necessary to first fix
the GPU frequency before benchmarking (see [26]). The
speed was set at the maximum supported frequency of
852 MHz for the GPU (gbus) and 924 MHz for the
memory (emc).



1) AES in CTR mode: The “Kepler” architecture can
reach full occupancy with a higher number of registers
per threads, since it has 65536 registers for up to 2048
threads per multiprocessors. This can be seen in the
partial results in table 7, where kernels with up to 32
registers have an occupancy of one. However, some
kernels will be limited by the shared memory, such as
“FT SEQ2 PRMT 8coalcoal” which uses more than the
maximum of 6 KiB per blocks when using 256 threads
per blocks (this kernel needs two forward tables and
the coalescing buffer in shared memory). Unlike on the
Fermi architecture, the fastest kernels use coalescing
(using shared memory).

As with the GT620, kernels can work in host memory
rather than the GPU memory, results are shown in
table 8. However, unlike a discrete graphic card, the
memory is physically the same for the host and the
GPU in the Tegra K1 (as in most system-on-chip).
From this sharing, one could hope for a more efficient
implementation. In practice, results are mixed: while the
worst-case scenario isn’t not as bad as it was over the PCI
bus in the GT620, the best-case scenario is more than
twice as slow as it was in GPU memory. Also, it seems
coalescing the loads is more important than coalescing
the stores in this case.

Fig. 7. AES-CTR kernels on Tegra K1 (extracts)
Time (ms) Kernel regs shared occup.

105252.977 BTB32SRDIAGKEY0 PRMT 8coalcoal 30 4612 1.000
105481.469 BTB32SRDIAGKEY0 C 8coalcoal 30 4612 1.000
108210.227 BTB32DIAGKEY0 PRMT 8coalcoal 31 4612 1.000
109460.227 BTB32DIAGKEY0 C 8coalcoal 31 4612 1.000
113932.891 BTB32DIAGKEY0 PRMT 8coalnocoal 32 4612 1.000

. . . . . . . . . . . . . . .
211367.859 BTB0 PRMT8AS32 8coalcoal 34 4612 0.750
213734.531 BTB0 PRMT8AS32 8coalnocoal 35 4612 0.750

. . . . . . . . . . . . . . .
220478.938 FT INT1 C 8coalcoal 37 5636 0.750
221382.859 FT SEQ2 PRMT 8coalcoal 32 6660 0.875

. . . . . . . . . . . . . . .

Fig. 8. AES-CTR kernels on Tegra K1 in “pinned” memory
Time (ms) Kernel regs shared occup.

244830.016 BTB32SRDIAGKEY0 PRMT 8coalcoal30 4612 1.000
261703.688 BTB32SRDIAGKEY0 PRMT 8coalshufcoalshuf35 516 0.750
277638.094 BTB32SRDIAGKEY0 PRMT 8coalnocoal32 4612 1.000
278203.781 BTB32SRDIAGKEY0 PRMT 8coalshufnocoal31 516 1.000
290254.031 BTB32SRDIAGKEY0 PRMT 8nocoalnocoal29 516 1.000
529112.625 BTB32SRDIAGKEY0 PRMT 8nocoalcoalshuf34 516 0.750
566771.188 BTB32SRDIAGKEY0 PRMT 8nocoalcoal34 4612 0.750

2) AES in GCM mode: A summary of performance
for the four implementation of encryption described in
section V-A, plotting the speed against the size of the
data encrypted, can be seen in figure 10. The figure

also includes the two reference libraries. The decryption
speed is shown in figure ??.

3) Single-call GCM, no AAD: This is the trivial
variant, doing all of AES on GPU in one call. As can
be seen in the figures, both encryption and decryption
are faster than the OpenSSL library (itself faster than
Crypto++) at sizes of 64 KiB and larger. Despite doing
an identical amount of work, decryption is faster as it can
fully overlap AES and GCM as explained in section V.

4) By chunks GCM, no AAD: This variant tries to
overlap AES and GCM in encryption by cutting data
into “chunks”. Specifically, for this run, the code tries
to cut the data in 8 “chunks” of at least 512 KiB
and at most 8 MiB. Any size of 512 KiB or less will
only use one chunk; from 1024 KiB to 2 MiB from
2 to 4 chunks of 512 KiB; from 4 MiB to 64 MiB 8
chunks of 512 KiB to 8 MiB ; and 128 MiB uses 16
chunks of 8 MiB. This seems to be a good compromise,
though a full exploration of the parameter space was not
performed. As can be seen, the performance improves
significantly for encryption of 2 MiB and more. Lower
sizes are impacted by the higher overheads of this
implementation. Decryption performance is the same,
except for measurement errors.

5) Effects of AAD: Adding an identical amount of Ad-
ditional Authenticated Data requires a significant amount
of CPU work, since only GCM is applied to AAD. When
the GPU runs at full speed, it is capable of doing AES
in counter mode at a faster rate (over a gigabyte per
seconds) than a single core can do GCM (at around 180
megabyte per second). Adding a large amount of AAD
makes the computation even more limited by the ability
of a core to do GCM. Since there is always some GCM
to do while AES in running, this results in similar speed
for encryption and decryption, and negates the advantage
of using “chunks” for AES.

VII. CONCLUSION & FUTURE WORK

In this paper, we introduce first an extensive study of
possible AES implementations using CUDA. We then
introduce a full hybrid implementation of AES-256 in
GCM mode built on top of our high-performance imple-
mentation of AES and the best published implementation
of GCM in NEON. We show that this hybrid imple-
mentation is significantly faster than two state-of-the-
art CPU implementations in two widely used libraries,
with or without Additional Authenticated Data, for both
encryption & decryption, as long as enough data has to
be encrypted to justify the overhead of exploiting the
GPU.



Fig. 9. Performance of encryption with no AAD
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As mentioned, changing the “block” size might have
an influence on AES performance and should be studied.
Using more than one CUDA “threads” to compute each
AES block should also be more thoroughly evaluated.
Optimal “Chunk” size could also be studied, along with
the effect of using “pinned” memory on the host to allow
asynchronous transfers. Encrypting a large amount of
data with a single key in a single call is not the most
commonly benchmarked aspect of AEAD encryption,
where small data size is the norm. Future work will
include throughput measurement for smaller data sizes.
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APPENDIX A: GEFORCE GT 620

CUDA Device Query ( Runtime API ) v e r s i o n (CUDART s t a t i c l i n k i n g )
D e t e c t e d 1 CUDA Capable d e v i c e ( s )
Device 0 : ” GeForce GT 620”

CUDA D r i v e r V e r s i o n / Runtime V e r s i o n 6 . 5 / 6 . 5
CUDA C a p a b i l i t y Major / Minor v e r s i o n number : 2 . 1
T o t a l amount o f g l o b a l memory : 1023 MBytes

(1072889856 b y t e s )
( 2 ) M u l t i p r o c e s s o r s , ( 48) CUDA Cores /MP: 96 CUDA Cores
GPU Clock r a t e : 1400 MHz ( 1 . 4 0 GHz)
Memory Clock r a t e : 535 Mhz
Memory Bus Width : 64− b i t
L2 Cache S i z e : 131072 b y t e s
Maximum T e x t u r e Dimension S i z e ( x , y , z ) 1D=(65536) , 2D

=(65536 , 65535) , 3D=(2048 , 2048 , 2048)
Maximum Layered 1D T e x t u r e Size , ( num ) l a y e r s 1D=(16384) , 2048

l a y e r s
Maximum Layered 2D T e x t u r e Size , ( num ) l a y e r s 2D=(16384 , 16384) ,

2048 l a y e r s
T o t a l amount o f c o n s t a n t memory : 65536 b y t e s
T o t a l amount o f s h a r e d memory p e r b l o c k : 49152 b y t e s
T o t a l number o f r e g i s t e r s a v a i l a b l e p e r b l o c k : 32768
Warp s i z e : 32
Maximum number o f t h r e a d s p e r m u l t i p r o c e s s o r : 1536
Maximum number o f t h r e a d s p e r b l o c k : 1024
Max d imens ion s i z e o f a t h r e a d b l o c k ( x , y , z ) : ( 1 0 2 4 , 1024 , 64)
Max d imens ion s i z e o f a g r i d s i z e ( x , y , z ) : ( 65535 , 65535 , 65535)
Maximum memory p i t c h : 2147483647 b y t e s
T e x t u r e a l i g n m e n t : 512 b y t e s
C o n c u r r e n t copy and k e r n e l e x e c u t i o n : Yes wi th 1 copy

e n g i n e ( s )
Run t ime l i m i t on k e r n e l s : Yes
I n t e g r a t e d GPU s h a r i n g Host Memory : No
S u p p o r t h o s t page−l o c k e d memory mapping : Yes
Al ignment r e q u i r e m e n t f o r S u r f a c e s : Yes
Device has ECC s u p p o r t : D i s a b l e d
Device s u p p o r t s U n i f i e d A d d r e s s i n g (UVA) : Yes
Device PCI Bus ID / PCI l o c a t i o n ID : 1 / 0
Compute Mode :

< D e f a u l t ( m u l t i p l e h o s t t h r e a d s can use : : c u d a S e t D e v i c e ( ) w i th
d e v i c e s i m u l t a n e o u s l y ) >

dev iceQuery , CUDA D r i v e r = CUDART, CUDA D r i v e r V e r s i o n = 6 . 5 , CUDA
Runtime V e r s i o n = 6 . 5 , NumDevs = 1 , Device0 = GeForce GT 620

R e s u l t = PASS

[CUDA Bandwidth T e s t ] − S t a r t i n g . . .
Running on . . .

Device 0 : GeForce GT 620
Quick Mode

Device t o Device Bandwidth , 1 Device ( s )
PINNED Memory T r a n s f e r s

T r a n s f e r S i z e ( By tes ) Bandwidth (MB/ s )
33554432 5850 .6

R e s u l t = PASS

APPENDIX B: TEGRA K1

CUDA Device Query ( Runtime API ) v e r s i o n (CUDART s t a t i c l i n k i n g )
D e t e c t e d 1 CUDA Capab le d e v i c e ( s )
Device 0 : ”GK20A”

CUDA D r i v e r V e r s i o n / Runtime V e r s i o n 6 . 0 / 6 . 0
CUDA C a p a b i l i t y Major / Minor v e r s i o n number : 3 . 2
T o t a l amount o f g l o b a l memory : 1746 MBytes

(1831051264 b y t e s )
( 1 ) M u l t i p r o c e s s o r s , ( 1 9 2 ) CUDA Cores /MP: 192 CUDA Cores
GPU Clock r a t e : 852 MHz ( 0 . 8 5 GHz)
Memory Clock r a t e : 924 Mhz
Memory Bus Width : 64− b i t
L2 Cache S i z e : 131072 b y t e s
Maximum T e x t u r e Dimension S i z e ( x , y , z ) 1D=(65536) , 2D

=(65536 , 65536) , 3D=(4096 , 4096 , 4096)
Maximum Layered 1D T e x t u r e Size , ( num ) l a y e r s 1D=(16384) , 2048

l a y e r s

Maximum Layered 2D T e x t u r e Size , ( num ) l a y e r s 2D=(16384 , 16384) ,
2048 l a y e r s

T o t a l amount o f c o n s t a n t memory : 65536 b y t e s
T o t a l amount o f s h a r e d memory p e r b l o c k : 49152 b y t e s
T o t a l number o f r e g i s t e r s a v a i l a b l e p e r b l o c k : 32768
Warp s i z e : 32
Maximum number o f t h r e a d s p e r m u l t i p r o c e s s o r : 2048
Maximum number o f t h r e a d s p e r b l o c k : 1024
Max d imens ion s i z e o f a t h r e a d b l o c k ( x , y , z ) : ( 1 0 2 4 , 1024 , 64)
Max d imens ion s i z e o f a g r i d s i z e ( x , y , z ) : (2147483647 , 65535 ,

65535)
Maximum memory p i t c h : 2147483647 b y t e s
T e x t u r e a l i g n m e n t : 512 b y t e s
C o n c u r r e n t copy and k e r n e l e x e c u t i o n : Yes wi th 1 copy

e n g i n e ( s )
Run t ime l i m i t on k e r n e l s : No
I n t e g r a t e d GPU s h a r i n g Host Memory : Yes
S u p p o r t h o s t page−l o c k e d memory mapping : Yes
Al ignment r e q u i r e m e n t f o r S u r f a c e s : Yes
Device has ECC s u p p o r t : D i s a b l e d
Device s u p p o r t s U n i f i e d A d d r e s s i n g (UVA) : Yes
Device PCI Bus ID / PCI l o c a t i o n ID : 0 / 0
Compute Mode :

< D e f a u l t ( m u l t i p l e h o s t t h r e a d s can use : : c u d a S e t D e v i c e ( ) w i th
d e v i c e s i m u l t a n e o u s l y ) >

dev iceQuery , CUDA D r i v e r = CUDART, CUDA D r i v e r V e r s i o n = 6 . 0 , CUDA
Runtime V e r s i o n = 6 . 0 , NumDevs = 1 , Device0 = GK20A

R e s u l t = PASS

[CUDA Bandwidth T e s t ] − S t a r t i n g . . .
Running on . . .

Device 0 : GK20A
Quick Mode

Device t o Device Bandwidth , 1 Device ( s )
PINNED Memory T r a n s f e r s

T r a n s f e r S i z e ( By tes ) Bandwidth (MB/ s )
33554432 11897 .3

R e s u l t = PASS
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