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Abstract—The subject of performance programming is a
complex one, about which many scholarly papers have been
published. Deriving from classic introductions such as Chellappa
et al. [1], this article aims at providing an experience-based
approach to the newcomers. Its target audience includes all those
interested in writing high-performing applications, whether their
background includes computer science or not. On the basis of
existing codes, we will detail a path leading to performance
improvements with minimal effort and in a minimal amount
of time. We’ll also cover good practices to ensure the correctness
and efficiency of the work done.
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I. INTRODUCTION

Performance is a difficult thing to obtain in programming.
Not just because writing fast code is complex, but also because
understanding why the code isn’t fast in the first place is
often far from obvious. When tasked with improving the
performance of a code, developers find themselves with a well-
known multi-step agenda that has to be iterated upon:

1) Identify the sections of the code that take up most of
the time;

2) Analyze why these sections are so costly;
3) Improve their performance by targeting bottlenecks.

But this conventional methodology, based on Amdalh’s
law [2], is only a very succinct explanation - or a high-
level view - of the actual processes involved. It does not
express the low-level concerns of the everyday programmer.
For performance isn’t just about the code; it is about the entire
sequence of decisions and elements that leads from the code
to the actual computations, i.e.

1) The chosen algorithms;
2) The specific implementation of these algorithms in the

chosen programming language;
3) The organization of the data on which the algorithms

will work;
4) The choice of an optimizing compiler to convert the code

from source to binary;
5) The third-party libraries on which the code relies;

6) The actual hardware on which the code will run.
Each of these decisions and elements must be taken into ac-
count to achieve the goal of optimized performance; ignoring
any one can lead to a significant waste of efficiency. And while
the process of creating and running codes is sequential through
or within each elementary step, it is the entire sequence that
has to be targeted at once. Optimizing one step for a given
set of states of the other steps does not mean it will remain
optimal once these other steps have changed.

This paper suggests a very pragmatic approach built on
years of experience in optimizing code - an approach that tries
to maximize the efficiency of the programmer’s time. Rather
than rewriting the code straight away, a better idea is to start
by leveraging all the tools available to maximize its efficiency,
and then only to consider modifying it. In this respect, the
important points this paper will try to make are the following:

Reproducibility
we want to be able to reproduce both the results of
the execution of the code (fast but wrong is not a
good thing), and the measured performance. This is
an issue for programs whose performance is data-
sensitive, such as convergence algorithms, as several
data sets will have to be validated.

Maintainability
even if ultimate performance is the objective, the
code will have to be maintained in one way or
another. As obvious as it sounds, from two imple-
mentations with similar performance, the easier to
explain and maintain is usually the better choice.

Prioritization
time should be invested where the best results are
likely to be obtained. Manually fine-tuning a kernel is
fun but very often it is also an inefficient use of time.
Once a code section is fast enough for its purpose,
there is no point in making it faster.

Performance
with everything else above in mind, performance
becomes a much more manageable goal.

II. EVALUATION AND VALIDATION

A. Test cases

The single most important thing when working on a code
is to maintain the validity of the results. The second most
important thing is to reliably quantify the gain (or loss) of
performance of the modified, validated version.
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Validating results is always a difficult task. While some
codes will have the good property of producing output files
whose content depends solely on the input parameters, it is
not always the case. Any code involving IEEE754-2008 [3]
floating-point operations will suffer from rounding approxi-
mations, unless compiled with extremely strict conformance
options that prevent any performance gain. Any code involving
random numbers (such as Monte Carlo methods) will produce
unreproducible results. And not all algorithms are equal with
regards to numerical accuracy, a subject covered in details by
Higham [4].

Accordingly, the first step is to establish a test case (or a
set of test cases) that will have several good properties for
validating the results:

• An execution time short enough that it can be tested on
a regular basis;

• An execution time long enough that small mistakes are
likely to become noticeable in the output, rather than
being masked by numerical approximations;

• A good coverage of the significant portions of the com-
putations, both in terms of amount of code and type of
input data (e.g. when propagating energy in a discretized
space, the first few steps are usually full of zeroes, while
boundary conditions are not reached and thus not tested
until many iterations have been run);

• A clear validating procedure to ensure the output is
correct.

These aspects should be discussed with the people interested in
running the code for production. The second and third point, in
particular, are not always easy to achieve. For codes involving
random numbers, test cases should be de-randomized, for
instance by fixing a seed or by precomputing one or more
set of values, as it is usually the easiest way to ensure
reproducibility.

The second step is to establish another test case (or another
set of test cases), whose purpose will be to check performance.
This test case will usually be larger (and longer running)
than the validating case. It should also come with a clear
validating procedure, in order to trap any residual mistake
that might not be noticeable with the smaller test case. And
it should be reasonably representative of typical production
inputs. This can be very hard to achieve for extremely long
and/or extremely big codes. Unfortunately, there is no shortcut
here, as representativeness is highly dependent on the type of
code.

Finally, never forget that it does not make much sense to try
and improve a code with remaining issues. Verifying that the
code doesn’t misbehave is therefore an important preliminary
step. Compilers can optionally do runtime bounds checking.
Tools like Valgrind will check for accesses that haven’t been
initialized or that reach beyond properly allocated memory.
Any such issue in the code must be dealt with prior to any
kind of optimization as it is bound, sooner or later, to result
in unreliable behaviors.

B. Measuring performance

While measuring performance seems at first glance quite
simple, it is actually a fairly complex subject as well. What
should you measure? And how should you measure it? When
you’ve come up with reasonable answers to these two ques-
tions, there remains the difficulty of ensuring the consistency
of measurement from one run to another.

What to measure is logically the first decision. Eventually,
something akin to the time command is going to be used: when
the code is run in production, it is the entire execution time
from beginning to end that is going to matter to the consumers
of the code. It’s also going to matter to the programmer,
as it is the time taken by any validation run or full-scale
measurement. If this metric is obviously important, others
are, too. After a profiling has been done (see section II-C
below), the code will be seen as a sequence of stages: the
prolog or initialization phase (usually an O(problem size)),
one or more computational steps of varying complexity, and
the epilog (also usually an O(problem size)). The costliest of
these three steps will usually be the computational part, but it
is not always the case. Prologs and epilogs generally consists
of I/O and data movements, which are outside the scope of this
article. If they dominate the execution time, either the code is
not amenable to improvements, or the test case is too small
for a significant measurement.

Gustafson’s law [5] helps us here, as for most codes there
should be a problem size big enough that the computation
part dominates the execution time. Gustafson’s law is an
important consideration: even if the test case used during
the optimization phase doesn’t offer an overall improvement
(because of significant prolog and epilog times combined
with Amdhal’s Law), larger production cases might since
the fraction of time spent in the computational phase will
be higher. It is therefore important to keep track not only
of the overall execution time, but also of each main phases
of the code. An ×2 improvement in a computation phase
representing 50% of the test case runtime is an overall ×1.33
improvement of the whole code, but an ×2 improvement in
a computation phase representing 98% of the production case
runtime is an overall ×1.96 improvement.

How to measure it is the second step. The problem here
is that time scales on computers can vary by orders of
magnitudes. On a 2.5 GHz CPU, a single CPU cycle takes
0.4 ns, or 4× 10−10s.

Execution times that go beyond the hour take on the order
of 1014 cycles, of which only the most significant digits make
sense. Conversely, a small function of a few thousand cycles
would take on the order of 10−7s, a precision greater than most
system calls would ensure in practice. It is a good idea to keep
these orders of magnitudes in mind when choosing the proper
timer. For most human-scale measurements (tenths of seconds
or more), the gettimeofday function is perfectly adequate. For
hundreds of microseconds or less (millions of cycles or less)
measurements, use rdtsc (in x86-64 compilers) to get the
current CPU cycle count. For time scales in between, things



are less clear-cut: gettimeofday having a theoretical precision
of a microsecond, it should be adequate. But since rdtsc
returns a 64 bits integer, measuring billions of cycles is also
an option.

Consistency of measurement might be the most overlooked
aspect of the problem. Codes seldom run on their own on
a computer; they operate in an environment that includes
the operating system, various housekeeping programs run-
ning permanently or regularly, and potentially other users.
Whenever possible, reliable measurements should be made
on an otherwise idle machine - one where very little is
running on top of the operating system. Any other code will
influence the results, by consuming memory bandwidth, inter-
cpu bandwidth, cache space, I/0 bandwidth, or even by simply
raising the power consumption of a CPU and affecting the
thermal behavior of the others.

That is not all; the operating system behavior can drastically
affect the performance of the CPU. Modern machines have
multiple cores, each of them with its private L1 cache (and
often private L2 caches). Whether or not the operating system
let the code run on the same core for the entire run will
greatly affect performance, as each move from one core to
another will force the code to reload the local caches. Moving
from one socket to another has an even greater effect: not
only the shared intra-socket cache (L3 on the Sandy Bridge
architecture) will be reloaded, but NUMA effects will happen
as well. To keep that under control, the Linux operating system
exposes commands to pin or lock a process on a subset of
cores, to specify which NUMA memory domains to use, and
so forth (see for instance numactl). Understanding the exact
topology of the machine is also advisable, using tools from e.g.
the hwloc library. When a code has already been parallelized,
many tools have the ability to automatically enforce the pin-
ning: the KMP AFFINITY environment variable in the Intel
OpenMP [6] implementation, the GOMP CPU AFFINITY
environment variable in the GNU OpenMP implementation,
the -binding option in the Intel MPI [7] library, and so on.
The golden rule here is that ensuring a consistent placement
of processes and threads in the machine ensures reproducible
measurements.

C. Profiling

Profiling is the process of evaluating the relative cost of
each part of the code. Without proper profiling, there is no way
to tell which part of the code should be improved. No matter
how convincing is the argument that function XYZ is the most
important in the code, only an objective assessment should be
trusted. Intuition, past experience, alternative implementations
and test on completely different hardware platforms do not
represent the current status of the code on the currently
available hardware.

There are two main classes of profiling: instrumentation and
sampling. Instrumentation adds instructions inside the binary
to dynamically measure the relative use of each function.
While comparatively reliable for creating call trees (how
each function calls each other) and call counts, it has the

bad property of adding overhead to the code and potentially
altering its behavior. Sampling takes an unmodified code, and
checks its running at regular intervals to evaluate the relative
importance of each part. While much less intrusive, it can
sometimes miss short but important parts of the code, or
have weird side-effect due to the sampling interval. Neither
is strictly better than the other, so both types should be used.
Tools like gprof, Intel VTune [8] or callgrind [9] are all
useful, to the extent that all available tools should be used,
not just one of them. Each has its strengths and weaknesses,
and it is the combination of their results that gives a clear
picture of the code’s dynamic behavior.

In an ideal world, profiling should be done on nearly
production-ready code, i.e. a highly optimized binary. But
more often than not, optimizations obfuscate the code to the
point that profiling results are not very helpful. In difficult
contexts, optimizations (and inlining in particular) should be
“dialed down” step by step, and the consistency of profiling
results checked accordingly until meaningful numbers are
obtained. For instance, if the original results indicate that the
do the computations function does 95% of the work, then
subsequent results with less inlining should show the same
order of magnitude for the sum of the time periods spent in
do the computations and its call tree (all the functions it calls,
and all the functions the latter call, and so on). In case of
inconsistent results, you must absolutely understand why, and
identify which optimization changed the code’s behavior so
drastically that the profiling results change. It might become
important later to understand how to improve performance.

Profiling shouldn’t be viewed as a one-shot operation.
Once the costlier parts have been identified and improved,
profile your code all over again to get a new, up-to-date
picture. Improvements in one part will make the other parts
comparatively more important, but side-effect such as new
cache behavior may alter their performance, for better of for
worse.

III. USING THE COMPILER

Most developers see the compiler as a necessary evil, except
for those who have forsaken it completely (or so they think)
for so-called interpreted languages. Obviously, these languages
cannot be run directly on the hardware, and therefore a
translation layer is still present. While it could be a virtual
machine, for performance reason it is often a just-in-time
compiler. Which, as its name implies, is still a compiler, but
one that tries to be fast rather than efficient and on which the
developer has very little control. For the vast majority of codes
requiring all-out performance, the compiler will be offline and
highly tweakable. The examples in the paragraphs below will
be related to Intel’s C/C++ and Fortran compilers, as they are
probably the most ubiquitous in high performance computing,
but most comments are applicable to other languages and other
compilers as well.



A. The hardware problem
To understand why compiling the programming language

into machine code via an offline compiler is so important,
we first have to mention a few things about hardware con-
siderations (a good starting point on the subject is Hennessy-
Patterson [10]). A computer CPU does not execute sophisti-
cated, high-level code. It only executes very basic instructions,
of which three classes are really important to us: memory
operations, computations, and control flow operations. Any
computational loop (or even non-loop kernels) will be essen-
tially a set of control flow instructions surrounding a sequence
of memory loads, operations, and memory stores. Anything
else will be overheads that are useless to the higher-level
algorithms but eat up CPU time. The list include in particular
function calls, register moves, register spilling, virtual function
handling, indirect references, etc.

The entire point of a good optimizing compiler is to both
eliminate as much of these overheads as possible and to
produce binary code that will be as efficient as possible
on the target architecture for the computational parts of the
code. Any spurious instructions in the code flow will degrade
performance, and much more so when the code is highly
efficient. Let’s take a synthetic example with a fairly naive
x86-64 version of the BLAS [11] saxpy function, first in a
basic C implementation (listing 1) then in its assembly version
(listing 2).

Listing 2. Trivial saxpy
1 . . t a g v a l u e s a x p y . 1 :
2 x o r l %eax , %eax
3 movslq %edi , %r d i
4 t e s t q %r d i , %r d i
5 j l e . . B1 . 5
6 . . B1 . 3 :
7 movsd (% r s i ,% rax , 8 ) , %xmm1
8 mulsd %xmm0, %xmm1
9 addsd (%rdx ,% rax , 8 ) , %xmm1

10 movsd %xmm1, (%rdx ,% rax , 8 )
11 i n c q %r a x
12 cmpq %r d i , %r a x
13 j l . . B1 . 3
14 . . B1 . 5 :
15 r e t

One might consider that the two lines with incq (line 11)
and cmpq (line 12), dealing with control flow, are overheads
that should be dealt with. Actually, they’re inexpensive: in the
context of an otherwise idle integer unit, any modern out-of-
order CPU core will execute them at the same time as the
useful floating-point instructions. The real killer here is the
sequence starting with the load instructions (line 7) as they will
take hundreds of CPU cycles if they miss the various caches,
followed by the producer-consumer dependency between the
multiplication (line 8) and the addition (line 9), and between
the addition and the store (line 10). Obviously, the literature is

full of solutions to these problems. Loop unrolling will mask
remaining overheads from the control flow instructions. It will
also, along with software pipelining, try to mask the producers-
consumers dependencies. These are textbook considerations,
and most if not all of them can be taken care of by the compiler
(or indeed the BLAS library itself).

The real point of this example is to illustrate what happens
when the compiler does its job properly. While the vectorizer
and the aforementioned optimizations will improve the per-
formance of this code, any additional overhead will degrade
it. The worst-case scenario is the introduction of additional,
dependent load operations in the loop. Any of those (such as
accessing an object before accessing a field in it, or an indirect
access through a pointer to pointer) will add extra, potentially
large latency to the dependency chain. On Sandy Bridge, a
mulsd operation has a latency of 5 cycles. A movsd from
memory can consume from 3 cycles (best case scenario, hitting
the L1 cache) to 230-250 cycles (hitting the main memory
of the same NUMA node on a dual-socket Sandy Bridge) to
350-370 cycles (hitting the main memory of the other NUMA
node) to over 600 cycles (hitting the most remote NUMA node
in a quad-socket Sandy Bridge).

That is why analyzing the assembly code is so important,
for it is the binary code that will eventually be executed.
One cannot reasonably hope to optimize the performance of
a program on a processor without understanding how this
processor works.

B. General optimization

The basic rule in exploiting a compiler is to start by letting
the people who created it do the job. Compilers include a lot
of optimizations. Many of them are more or less mandatory
because they are cheap (in terms of compilation time) and
offers large gains. Some of them are additional extras that are
very often used, as they are usually worth the extra compilation
time. Finally, some can be very costly, and can have wildly
different effects on performance depending on the specific
code involved.

The first job is therefore to choose a compiler. The easiest
choice is the machine vendor’s, as it is likely to be the
most suited to the target hardware architecture. But third-
party compilers are also of interest, precisely because of their
strengths and weaknesses. If multiple compilers are available,
try them all. It will help you identify bugs and approximations
in the source code and, eventually, lead to the selection of
one compiler over the others. This, however, will not be a
definitive choice: changing parts or all of the code to improve
it might help one compiler more than another, to the extent that
the former second choice might become the new first choice.
Also, be sure to use the latest available version, barring some
fatal bug in it.

The optimization options to try first are those prefixed with
-O and suffixed with a number (the larger the number, the
larger the set of optimizations applied). All codes should work
at all optimization levels. If it is not the case, either there is
a bug in the compiler or there is a problem with the code.



Listing 1. C saxpy

void saxpy ( i n t n , double a lpha , double ∗x , double ∗y ) {
i n t i ;
f o r ( i = 0 ; i < n ; i ++) {

y [ i ] = a l p h a ∗ x [ i ] + y [ i ] ;
}

}

While it is common to blame compilers for failure at high
optimization levels, the culprit is generally the code itself.
Quite often, the code exercises corner cases or unspecified
behaviors of the language, leading to an apparent unreliable
behavior on the part of the compiler. In this case, the first step
is to ensure reproducibility at all general optimization levels,
either by fixing the code or by proving there really is a bug
in the compiler (and having the compiler’s vendor fix it, of
course). Each and every time a new set of options is used, the
results of the code should be checked for conformance.

Then, compilers such as Intel’s have inter-procedural op-
timizations that try to optimize the code across function
boundaries rather than within each function independently.
In recent versions, these optimizations are active by default
inside each compilation units (aka files). The -ipo option
enables these optimizations across compilation units. Instead
of compiling each file independently (creating “.o” files), the
compiler simply creates stubs and then, at link-time, it com-
piles everything in one go. The downside is that the entire code
has to be recompiled each time anything changes. The upside
is that all the information is available to the compiler, including
hard-coded values (array bounds, constants...) and call trees.
This allows the compiler to do a much better job: for instance,
if it is aware of the number of iterations in a loop, it can unroll
more efficiently. If a scalar parameter to a function is known
to be a constant, the compiler can use that knowledge. For
example, nice constants such as 0 and 1 are identity elements
for the addition and multiplication respectively; using them as
such prevents redundant computations.

Another must-try with recent Intel compilers is the set of
inlining options. Normally, a compiler will try to inline a
certain number of functions but will use heuristics to prevent
an excessively large code size and/or compilation time.
However, this often limits its ability to merge loops and/or
functions, and to eliminate redundant computations and/or
memory accesses. A particularly aggressive set of options
is -inline-forceinline -no-inline-factor
-no-inline-max-per-compile
-no-inline-max-per-routine
-no-inline-max-total-size
-no-inline-max-size -no-inline-min-size
which, combined with -ipo, tells the compiler to merge as
much of the code as it can into computational functions,
regardless of compilation time, its own memory usage and the
size of the resulting binary. Although these options combined
can be really aggressive in some contexts, many codes will

actually benefit a lot from them. For instance, when applied
to the Qiral QCD code [12], the improvement is superior
than ×2 with version 13.1.1.163 of the Intel compiler.

Those are general guidelines for the most common options;
each compiler has its own set of advanced settings, some of
which can be useful on some codes. As long as the results of
the code remain valid, any set of options can be used. Again,
if “the compiler broke the code”, then there is a problem
somewhere that must be tracked down. Otherwise, the problem
may reappear with a different compiler, a different machine
or, worse, a different data set.

C. Vectorization

The next step is to understand whether the compiler properly
vectorizes the code. The word “vector” shouldn’t be taken too
literally here, as it usually calls back to vector systems (from
the Cray 1 [13] onward). In the current era, “vector” refers to
the short, fixed-length registers in the CPU and their associated
operations (like the SSE and AVX instructions sets in the x86-
64 world or the QPX on the IBM BlueGene/Q [14]). There
have already been detailed works on the subject of vectorizers,
such as Intel’s own [15]. These are of course interesting for
advanced users, but might be too detailed for the newcomer
to vectorization.

The principle of vector instruction sets is to allow a single
instruction to perform multiple operations at once, thus adding
potential performance at a low cost. Analyzing why this is a
good trade-off would require a long explanation; suffice it to
say that nearly all contemporary CPU use such instruction sets.
We will detail some interesting differences between them in
section III-D below.

A good starting point to understand vectorization better is
SSE2’s mulsd mentioned in section III-A. In the Intel docu-
mentation [16], this instruction’s full name is “Multiply Scalar
Double-Precision Floating-Point Values”. As this description
implies, mulsd performs a multiplication on double-precision
floating-point values. However, it has a counterpart called
mulpd, or “Multiply Packed Double-Precision Floating-Point
Values”. Instead of a single multiplication, mulpd executes
one per element in the so-called vector. The precise size of
the vector depends on the instruction set (SSE or AVX). If
we take the example of SSE where vector registers are 128
bits, then we have two double-precision value (64 bits each,
as per IEEE754-2008 [3]) in each register. In other words,
each instruction will compute 2 flops instead of one. If we go
back to the saxpy function from listing 1, we can update the



assembly version to exploit this new instruction, as shown in
listing 3.

Listing 3. Trivial saxpy, with SSE
. . t a g v a l u e s a x p y . 1 :

x o r l %eax , %eax
movslq %edi , %r d i
t e s t q %r d i , %r d i
j l e . . B1 . 5

. . B1 . 3 :
movupd (% r s i ,% rax , 8 ) , %xmm1
mulpd %xmm0, %xmm1
addpd (%rdx ,% rax , 8 ) , %xmm1
movupd %xmm1, (%rdx ,% rax , 8 )
i n c q %r a x
i n c q %r a x
cmpq %r d i , %r a x
j l . . B1 . 3

. . B1 . 5 :
r e t

Obviously, this code will not work if the number of elements
in the vector is not a multiple of two, as we compute two
values for each iteration (note that it was hand-modified from
the automatically generated code in listing 2 as the compiler
vectorized code, including all the necessary checks, is not
suitable for an introductory example). But it does illustrate the
point that with the same number of instructions, we perform
twice as much work. On such a simple loop the compiler
has no issue with vectorization. It will even mention it in its
output when using the -vec-report3 option, as can be seen in
listing 4.

However, most loops are not that simple, and this is where
understanding the compiler is important. A modern compiler
will inform you about its successes and failures, but what these
actually mean is not always obvious. Let’s take a very concrete
example with the Hydro [17] code. Hydro is a mini-application
built from RAMSES [18][19][20]. It is used to study large-
scale structures and galaxy formation. This code includes
several variants, each of them designed to take advantage
of a certain kind of hardware: a standard C version using
OpenMP [6] directives and MPI [7] calls; a version using
OpenACC directives to exploit accelerators; an OpenCL for
the same purpose, etc. What we are going to look at is
the riemann function, which exists in two radically different
versions: the original in the OpenACC version of the code
and an updated and vectorization-friendly variant in the C
version. Compiling the original, untweaked version results in
what is shown in listing 5. The loop nest of interest is the
one referenced at line 102, 107 and 138 (see its structure
in listing 6). The compiler output shows that it failed to
vectorize the innermost loop at line 138, because it couldn’t
be certain that all iterations were data-independent from each
other. The compiler is absolutely right: this innermost loop is
a convergence loop, and each iteration is predicated on the

results of all the preceding iterations. Therefore, it cannot be
easily vectorized. As for the other two loops, the compiler
doesn’t even try to vectorize them since it could not process
the innermost loop, a requirement for the current version of
the vectorizer.

There is an easy way to force the compiler to vectorize
the code as it is: if we replace the upper bound of the
innermost loop (Hniter riemann) by a hardwired value like
10, then the compiler can fully unroll the innermost loop,
making the narray loop the new innermost loop. In practice,
the compiler still fails as it still can’t figure out that the
two external loop are fully parallel, but a directive exists to
help it out: #pragma ivdep. Using it on both these loops
allows vectorization of the code (with slightly modified line
numbers), as show in listing 7. However, this does not really
help: the code is now wrong, not to mention that hardwiring
a value is not an acceptable practice. To be able to properly
exploit the hardware in this critical function, the code needs
to be modified so that the compiler can vectorize it with the
original semantic. For this particular code, the author decided
to switch the convergence loop (the problematic one at line
138) and the narray loop at line 107. Of course, this implies a
complete reorganization of the loops (and the use of additional
temporary arrays). The new structure of the code is shown in
listing 8, while the result of compiling it is given in listing 9.
Note that the presence of an extra “SIMD” in the message is
an artefact of the directives required to tell the compiler that
the loop iterations are data-independent.

There is a lot of reasons for the vectorizer to fail, and
this paper is not the place to explain them all. If some
compiler output messages are self-explanatory, unfortunately
some aren’t. That being said, a few basic rules can help with
identifying and fixing issues.

• The Intel compiler only tries to vectorize the innermost
loop. Small innermost loops can and should be unrolled
(automatically, by a pragma or manually) if the number
of iterations is known. If it is not known, the situation is
more difficult. It might be possible to invert the loop with
a larger, parallel outer loop and the addition of temporary
arrays.

• Except for some types of reduction (arithmetic accumu-
lation in a scalar variable), the Intel compiler vectorizes
parallel loops. If the compiler complains that there is a
vector dependence, check that there really isn’t, and use
the appropriate directives to help with the compilation.

• Conditionals in the loop nest might prevent vectorization,
and make it less efficient anyway. It’s often a good idea
to move iteration-independent conditions out of the loop
nest.

While the compiler will tell which loops have been vec-
torized, it is not the only condition for successfully using
vector instructions sets. Compilers will often generate multiple
variants of a loop depending on various parameters (number
of iterations, alignment of data arrays...) and there is no
guarantee the vector version will always be picked up at



Listing 4. Compiling saxpy
$ i c c −O3 −vec−r e p o r t 3 −S t r i v i a l s a x p y . c
t r i v i a l s a x p y . c ( 4 ) : ( c o l . 3 ) remark : LOOP WAS VECTORIZED .

Listing 5. Compiling the OpenACC riemann
HydroC / oaccHydroC 2DMPI / Src$ i c c −s t d =c99 −O3 −vec−r e p o r t 2 −Wno−unknown−pragmas −S r iemann . c
r i emann . c ( 5 1 ) : ( c o l . 3 ) remark : LOOP WAS VECTORIZED .
r iemann . c ( 1 3 8 ) : ( c o l . 14) remark : l oop was n o t v e c t o r i z e d : e x i s t e n c e o f v e c t o r dependence .
r i emann . c ( 1 0 7 ) : ( c o l . 11) remark : l oop was n o t v e c t o r i z e d : n o t i n n e r loop .
r i emann . c ( 1 0 2 ) : ( c o l . 7 ) remark : l oop was n o t v e c t o r i z e d : n o t i n n e r loop .
r i emann . c ( 2 9 8 ) : ( c o l . 11) remark : l oop was n o t v e c t o r i z e d : e x i s t e n c e o f v e c t o r dependence .
r i emann . c ( 2 9 6 ) : ( c o l . 9 ) remark : l oop was n o t v e c t o r i z e d : n o t i n n e r loop .
r i emann . c ( 2 9 1 ) : ( c o l . 7 ) remark : l oop was n o t v e c t o r i z e d : n o t i n n e r loop .

Listing 6. Structure of the OpenACC riemann
f o r ( i n t s = 0 ; s < s l i c e s ; s ++) { / / l i n e 102

f o r ( i n t i = 0 ; i < n a r r a y ; i ++) { / / l i n e 107
/ / some code here
f o r ( i t e r = 0 ; i t e r < H n i t e r r i e m a n n ; i t e r ++) { / / l i n e 138

/ / some code here
}
/ / some code here

}
}

Listing 7. Vectorizing the OpenACC riemann
HydroC / oaccHydroC 2DMPI / Src$ i c c −s t d =c99 −O3 −vec−r e p o r t 2 −Wno−unknown−pragmas −S r iemann . c
r i emann . c ( 5 1 ) : ( c o l . 3 ) remark : LOOP WAS VECTORIZED .
r iemann . c ( 1 0 9 ) : ( c o l . 11) remark : LOOP WAS VECTORIZED .
r iemann . c ( 1 0 3 ) : ( c o l . 7 ) remark : l oop was n o t v e c t o r i z e d : n o t i n n e r loop .
r i emann . c ( 3 0 0 ) : ( c o l . 11) remark : l oop was n o t v e c t o r i z e d : e x i s t e n c e o f v e c t o r dependence .
r i emann . c ( 2 9 8 ) : ( c o l . 9 ) remark : l oop was n o t v e c t o r i z e d : n o t i n n e r loop .
r i emann . c ( 2 9 3 ) : ( c o l . 7 ) remark : l oop was n o t v e c t o r i z e d : n o t i n n e r loop .

Listing 8. Structure of the C riemann
f o r ( i n t s = 0 ; s < s l i c e s ; s ++) { / / l i n e 123

f o r ( i n t i = 0 ; i < n a r r a y ; i ++) { / / l i n e 148
/ / some code here

}
f o r ( i t e r = 0 ; i t e r < H n i t e r r i e m a n n ; i t e r ++) { / / l i n e 171

f o r ( i n t i = 0 ; i < n a r r a y ; i ++) { / / l i n e 179
/ / some code here

}
}
f o r ( i n t i = 0 ; i < n a r r a y ; i ++) { / / l i n e 206

/ / some code here
}

}



Listing 9. Vectorizing the C riemann
HydroC / HydroC99 2DMpi / Src$ i c c −s t d =c99 −O3 −vec−r e p o r t 2 −Wno−unknown−pragmas −S r iemann . c
r i emann . c ( 6 5 ) : ( c o l . 3 ) remark : LOOP WAS VECTORIZED .
r iemann . c ( 1 4 8 ) : ( c o l . 5 ) remark : SIMD LOOP WAS VECTORIZED .
r iemann . c ( 1 7 9 ) : ( c o l . 7 ) remark : SIMD LOOP WAS VECTORIZED .
r iemann . c ( 1 7 1 ) : ( c o l . 5 ) remark : l oop was n o t v e c t o r i z e d : n o t i n n e r loop .
r i emann . c ( 2 0 6 ) : ( c o l . 5 ) remark : SIMD LOOP WAS VECTORIZED .
r iemann . c ( 1 2 3 ) : ( c o l . 3 ) remark : l oop was n o t v e c t o r i z e d : n o t i n n e r loop .
r i emann . c ( 3 0 0 ) : ( c o l . 2 ) remark : SIMD LOOP WAS VECTORIZED .
r iemann . c ( 2 9 6 ) : ( c o l . 7 ) remark : l oop was n o t v e c t o r i z e d : n o t i n n e r loop .
r i emann . c ( 2 9 5 ) : ( c o l . 5 ) remark : l oop was n o t v e c t o r i z e d : n o t i n n e r loop .

runtime. Hardware counters inside the CPU can be used to
validate the results during execution. Tools such as VTune [8]
or Likwid [21] can be very useful to validate that the vectorizer
has been successfully exploited.

D. Target machine

We mentioned it in previous sections, there are two main
vector instruction sets for the x86-64 platform: SSE and AVX.
SSE was originally meant for single-precision floating-point
and integer data. Double-precision floating-point was added in
SSE2, and subsequent extensions added new instructions for
various purposes. They all have in common a 128-bit register
size, which is enough to hold four single-precision values, or
two double-precision values, in the XMM registers.

The AVX instructions set was introduced using a completely
new instructions encoding scheme (called VEX). While this
does not really concern most programmers, AVX’s main
selling point was the doubling of the register width to 256
bits, for eight single-precision or four double-precision values.
In the original AVX, only floating-point values can be worked
on in the 256 bits YMM registers. The lower half of these
YMM registers is aliased with the XMM registers. As you
can guess, going from SSE to AVX instructions in the same
code causes a small performance penalty.

One of the most overlooked feature of the new AVX
instruction set is the VEX.128 subset of instructions. These
instructions only work on the lower 128-bit part of the
YMM registers - the part aliased with XMM registers. While
they may seem quite redundant with the SSE instructions,
they actually offer a very important upgrade: whereas SSE
instructions have mostly two operands, AVX instructions have
three. listing 10 is an excerpt from the Intel documentation [16]
in which the SSE version stores its result in source operand
xmm1, while the VEX.128 version destroys neither of its
source operands. Whenever both sources are reused, this saves
a register-register movapd instruction. This may not look
like a lot, in particular in numerical codes where one of
the operands will be one-use only most of the time. But
the VEX.128 instructions are not limited to the floating-
point instructions; many integer instructions have been re-
implemented as well. They cannot access the upper 128 bits
of the 256 bits YMM registers, but they do have access to the

new three-operands format.
A code that benefits greatly from this is the Keccak

algorithm by Bertoni et al. [22], the winner of the NIST
competition to create SHA-3. The “SIMD instructions and tree
hashing” implementation [23] uses integer SSE instructions to
implement two 64-bit instances of the algorithm simultane-
ously. The implementation is done using C intrinsics rather
than assembly. The instructions in use are mostly logical xor’s,
logical or’s and shifts (used to implement the rotation of a 64
bit value). A brief extract implementing a rotation is shown
in listing 11 for SSE and listing 12 for AVX. Extra copies
to preserve the input values are required by the algorithm,
which reuses the input data several time. Statistics on the
partially unrolled loop show that the number of data movement
instructions has gone from 396 (35% of the 1132 instructions)
to 111 (13% of the 837 instructions). All the remaining moves
are memory accesses, none of them being register-register.
Speed measurement shows an improvement of more than 20%
for short hashes. As the only cost for high-level language or
intrinsics-based code is to use the -mavx options (or similar),
switching from SSE to AVX can offer a nice improvement for
a very small cost.

Listing 11. Keccak rotation in SSE
movdqa %xmm6, %xmm8
movdqa %xmm6, %xmm14
p s l l q $1 , %xmm8
p s r l q $63 , %xmm14
por %xmm14 , %xmm8

Listing 12. Keccak rotation in AVX
v p s l l q $1 , %xmm0, %xmm14
v p s r l q $63 , %xmm0, %xmm15
vpor %xmm15 , %xmm14 , %xmm14

IV. DATA LAYOUTS

As previously mentioned, a minimal understanding of the
hardware is required to exploit it. Efficiently utilizing the



Listing 10. mulpd from Intel documentation
66 0F 59 / r RM V/V SSE2 M u l t i p l y packed double−p r e c i s i o n f l o a t i n g −p o i n t
MULPD xmm1, xmm2 / m128 v a l u e s i n xmm2 / m128 by xmm1 .
VEX.NDS. 1 2 8 . 6 6 . 0 F .WIG 59 / r RVM V/V AVX M u l t i p l y packed double−p r e c i s i o n f l o a t i n g −p o i n t
VMULPD xmm1, xmm2, xmm3 / m128 v a l u e s from xmm3 /mem t o xmm2 and s t o r e s

r e s u l t i n xmm1 .
( . . . )

MULPD (128− b i t Legacy SSE v e r s i o n )
DEST [ 6 3 : 0 ] = DEST [ 6 3 : 0 ] ∗ SRC [ 6 3 : 0 ]
DEST [ 1 2 7 : 6 4 ] = DEST [ 1 2 7 : 6 4 ] ∗ SRC [ 1 2 7 : 6 4 ]
DEST[VLMAX−1:128] ( Unmodif ied )
VMULPD (VEX. 1 2 8 encoded v e r s i o n )
DEST [ 6 3 : 0 ] = SRC1 [ 6 3 : 0 ] ∗ SRC2 [ 6 3 : 0 ]
DEST [ 1 2 7 : 6 4 ] = SRC1 [ 1 2 7 : 6 4 ] ∗ SRC2 [ 1 2 7 : 6 4 ]
DEST[VLMAX−1:128] 0

computational resources of the CPU is important, but since the
term “memory wall” was coined by Wulf and McKee [24], it
has been known that memory accesses were the limiting factor
for many kinds of codes. The expression “bandwidth-bound
algorithm” is dreaded by many of those tasked with improving
performance, as it means that the available bandwidth from
the main memory to the CPU cores is the limiting factor. But
even without changing the algorithm, it is sometimes possible
to drastically improve performance.

One of the main issues with memory bandwidth is the
amount wasted by poor data layouts. This issue is not new, and
was already targeted by papers such as the work of Truong
et al. [25]. But it still seems to be largely unknown to most
developers. We first have to go back to computer architecture
(and mention again Hennessy & Patterson [10]). The main
technique for a CPU to avoid the hundreds of cycles required
for data to arrive from main memory are caches, tiny but fast
memories close to the execution cores. While their existence is
known, it seems that most programmers are unaware of their
behavior and write code that greatly impedes their efficiency.

A. Arrays of Structures vs. Structures of Arrays

Caches do not retain data at single element granularity, e.g.
a single double-precision value. While this would help with
temporal locality (the fact that a recently used element might
soon be reused), it would do nothing for spatial locality (the
fact that it’s likely the next useful element will be a memory
neighbor to a recently used element). To gain such spatial
locality, caches have a granularity of a cache line, a contiguous
amount of memory. Common sizes are 32 or 64 bytes of well-
aligned memory (i.e. the address of the first byte is an integer
multiple of the cache line size). Whenever a code requires an
element from memory, the entire cache line is loaded from
the main memory and retained in the cache. If a neighboring
element from the same cache line is subsequently needed, the
access will be a cache hit, and therefore very fast. This is
a well known mechanism, taught in most computer science
classes.

But the implications are not always well understood. If a
cache line is 64 bytes, then every memory transaction will
involve the whole 64 bytes, no matter how few bytes are
actually needed by the code. If only a single double-precision
element (8 bytes) is needed from each cache line, 87.5% of
the memory bandwidth is wasted on unused bytes. Therefore,
it is very important to ensure that as few elements as possible
in each loaded cache line are not used. Unfortunately, some
extremely common programming techniques goes against that
principle. The most obvious offenders are structures (and of
course objects, which are generally structures with associated
functions).

While there is a lot to be said in favor of structures, that is
not our subject; therefore we’ll look at the downside, the way
they can sometimes waste memory bandwidth. The content
of a well-defined structure is a lot of information related
to an abstract concept in the code - it could be a particle
used in fluid simulation, the current state of a point in a
discretized space, or even an entire car. All the occurrences
of that concept will be allocated in what is described as an
Array of Structures. Subsequently, functions in the code will
go through all occurrences in a loop to process the data, such
as this:

f o r e a c h p a r t i c l e i n c h a r g e d p a r t i c l e s
u p d a t e v e l o c i t y ( p a r t i c l e , e l e c t r i c f i e l d )

Presumably, the function update velocity will change the
speed of the charged particle in the electric field. But while the
speed might be defined with only a few values (e.g. the current
velocity in X, Y and Z), the structure itself is likely to contain
much more information that’s irrelevant to that particular step
of computations. But as structures are contiguous in memory,
much of that information will be loaded as they belong to the
same cache line. Let’s assume each particle in our example
is defined by 16 double-precision values, i.e. 128 bytes. The
structure would occupy 2 full cache lines all by itself. Let’s
also assume all 3 velocities are in the same half of the
structure, i.e. in the same cache line. Each time we need to



update a velocity, the CPU will:
1) Load the cache line (64 bytes) containing the three

velocities (24 bytes);
2) Perform any required computations, and update the value

in the cache;
3) Eventually, when space in the cache is needed, the whole

cache line (64 bytes) will be flushed to memory.
62.5% of the memory bandwidth required to load and store the
particle is wasted by unnecessary data. If the three velocities
were spanning both halves of the structure, then the bandwidth
requirement would double for the same amount of useful data
- wasting 81.25%.

One solution for this issue is called structures of arrays. As
the name implies, the idea is to inverse the relationship by
first allocating all atoms of data in arrays, and then grouping
them into a structure. Instead of having an array of particles,
each with its velocities, the code would use three arrays of
velocities. Each array would be contained as a single velocity
in X, Y or Z for all particles. The result for the function
update velocity above is that we would need three cache lines
instead of one: one for each of the X, Y and Z velocities.
But that is not a bad thing. The first particle would require
192 bytes of bandwidth, loading 8 elements of each array.
However, the next 7 particles would require no bandwidth
at all - their data had been prefetched by the first particle,
thanks to spatial locality. The average bandwidth per particle
is therefore an optimal 24 bytes per particle, with a greatly
reduced latency because of locality. If that function was purely
bandwidth-bound, we would have gained a factor of ×2.66 by
reorganizing data in a cache-friendly manner.

B. Multi-dimensional array vs. array of pointers

This is an issue that doesn’t exist in the Fortran language,
where multi-dimensional arrays are the norm. But in the C
language family the issue is pervasive. A lot of code utilizes
not multi-dimensional arrays but array of pointers, adding a
useless intermediate load. Listing 13 illustrates this form of
inefficient code. The data is stored behind a pointer to a pointer
(hence the two stars). The body of the code looks good to the
untrained eye: it has a nice pair of square brackets to access
the element of the two dimensional data, as is done in Fortran.
But the performance will be suboptimal. The real meaning of
the code includes not one, but two chained loads to access the
data. The machine must first evaluate A[i], itself a pointer to
double. Then this pointer is used to retrieve A[i][j], the data
itself. This is effectively an indirect access.

An efficient way can be exactly the same in the body,
by utilizing a properly typed pointer to the data. This is
illustrated in listingg 14. By specifying the dimensions of
the array in the parameter list, it becomes possible to use the
clean multi- dimensional notation of the C language - which
unfortunately looks exactly the same as a pointer-to-pointer
double dereference. This new version will simply compute the
linear access i * n + j, and do a single lookup in memory to
access the data. Of course, the data allocation is also different:
instead of first allocating the array of the pointer, followed by a

loop allocating all the pointers to double, a single allocation of
the entire data set is used. The exact same allocation that would
be used for the ugly, explicitly linearized version illustrated in
listing 15 that most programmers justifiably try to avoid.

Listing 13. Example of array of pointers
void matr ix sum aop ( i n t n , double ∗∗ A,

double ∗∗ B) {
f o r ( i n t i = 0 ; i < n ; i ++) {

f o r ( i n t j = 0 ; j < n ; j ++) {
A[ i ] [ j ] += B[ i ] [ j ] ;

}
}

}

Listing 14. Example of multi-dimensional arrays
void matrix sum mda ( i n t n , double A[ n ] [ n ] ,

double B[ n ] [ n ] ) {
f o r ( i n t i = 0 ; i < n ; i ++) {

f o r ( i n t j = 0 ; j < n ; j ++) {
A[ i ] [ j ] += B[ i ] [ j ] ;

}
}

}

Listing 15. Example of explicitly linearized arrays
void m a t r i x s u m l i n e a r ( i n t n , double ∗ A,

double ∗ B) {
f o r ( i n t i = 0 ; i < n ; i ++) {

f o r ( i n t j = 0 ; j < n ; j ++) {
A[ i ∗ n + j ] += B[ i ∗ n + j ] ;

}
}

}

V. ALGORITHMS

The word algorithm can cover different types of problems
depending upon the audience. Computer scientists will think in
terms of basic programming techniques as explained by Aho
et al. [26]. Other scientists in need of high performance com-
puting will likely think more in terms of numerical analysis
as introduced by Atkinson [27]. In either cases, the idea is to
achieve the desired results with minimal complexity, that is,
with a minimal increase in work when augmenting the problem
size. Complexity is usually taught in most computer science
courses, and numerous books have been written on the subject
such as Arora et al [28].

It is usually quite difficult for a computer scientist to replace
a numerical algorithm chosen to solve a particular problem by
a “better” one. This requires understanding what the code is



trying to achieve in computer terms but also in physical (or
chemical, astronomical. . . ) terms as well. It also entails under-
standing the numerical stability, approximation, the boundary
conditions, and whatever other requirements might exist for
solving the underlying problem. This is something that must
be done with involvement someone from the scientific field.
More often than not, the constraints of numerical algorithms
are such that they unfortunately cannot be changed.

What remains to be studied is the implementation of such
algorithms, which quite often are built on top of other al-
gorithms - those of the computer science variety. Matrix
inversion, matrix multiplication, finding a maximum value,
fast Fourier transforms and so on are the building blocks
of many numerical algorithms. They are quite amenable to
improvements, substitution and well-studied optimizations.

One of the primary tasks of the optimizer in a numerical
code will be to identify these types of conventional algorithms,
and make sure the implementation used is the best one for the
code. This is usually not a lot of work, as vendor-supplied
libraries will include most of them. For instance, the Intel
MKL [29] library (accessible in the recent Intel compiler by
simply calling the -mkl option to the compiler and the linker)
includes full implementations of BLAS [11] or LAPACK [30],
fast Fourier transforms including a FFTW3 [31] compatible
interface, and so on. One important aspect when using such
libraries are their domain of efficiency: extremely small prob-
lem sizes are not well suited to the overhead of a specialized
library. For instance, large matrix multiplications should make
use of an optimized function such as dgemm. Small constant
size matrix multiplications (such as 3 × 3 matrices used
in Euclidean space rotation) should be kept as small hand-
written functions, potentially amenable to aggressive inlining.
In a similar way, whereas large FFT can take advantage of
FFTW3 itself or its MKL counterpart, small FFT of a given
size can sometimes be readily implemented with the FFTW
codelet generator described in [32]. A more work-intensive
optimization is the specialization of algorithms for constant
input data. For instance, if the small 3× 3 matrix mentioned
earlier is a rotation around the main axis of a 3D space, the
presence of zeroes and one in the matrix can be hard-coded
in the function, removing multiple useless operations.

VI. PARALLEL CODES

Parallelization is one of the richest and most complex
subjects of computer science, and is out of the scope of
this paper. Many introductory books have been written on
the subject among which for instance [33][34][35][36]. This
section deals with running parallel code on contemporary
machines without falling into common pitfalls.

A. NUMA

All recent multi-socket x86-64 systems are NUMA (Non-
Uniform Memory Access), i.e. the latency of a load instruction
depends on the address accessed by the load. The common
implementation in all AMD Opterons and all Intel Xeons
since the 55xx (i.e. Nehalem-EP family) is to have one or

more memory controller(s) in each socket, and to connect
each socket via a cache coherent dedicated network. In AMD
systems the links are HyperTransport, while for Xeons they are
QPI (QuickPath Interconnect). Whenever a CPU must access
a memory address located in a memory chip connected to
another socket, the request and result have to go through the
network, adding additional latencies. Such access is therefore
slower than accessing a memory address located in a locally
connected memory chip. This effect is illustrated in figure 1,
which plots the average latency of memory access when
stepping through an array of varying size on a dual socket
Xeon X5680 Westmere-EP. The first three horizontal plateaus
are measurements where the array fits in one of the three
levels of caches, while the much higher levels at over 12 MiB
measure the time to access the main memory. The four lines
represent the four possible relations between the computation
and the memory: 0/0 and 1/1 represent access to locally
attached memory, while 0/1 and 1/0 represent access to the
other socket’s memory. Going from about 65 ns to about 106
ns represents an approximately 63% increase in latency when
accessing remote memory.

B. NUMA on Linux

To avoid these kinds of performance issues, it is important to
understand how memory is allocated (virtually and physically)
by the operating system, to ensure memory pages (the concept
of paging is among those covered by Tanenbaum [37]) are
physically located close to the CPU that will use them. The
Linux page size will be 4 KiB or 2 MiB; the last one is more
efficient for TLB [10] but is not yet perfectly supported. This
page size will be the granularity at which the memory can be
placed in the available physical memories.

In Linux, this placement is made by specifying in which
“NUMA node” the physical page should reside. The default
behavior is only partially satisfactory. At the time the code
requires allocation of memory, virtual space is reserved but
no physical page is allocated. The first time an address inside
the page is written, the page will be allocated on the same
NUMA node that generated the write (if that memory is full,
the system will fall back to allocating on other nodes). This
is a very important aspect. If for one reason or another the
memory is “touched” (written to) by only one thread, then
all physical pages will live in the NUMA node where the
thread was executing at the time. Of course, if the advice from
section II-B was followed, then the thread has been properly
“pinned” on the CPU and will not move. This means than any
subsequent access by this same thread will benefit from the
minimal latency. That’s the good aspect of the behavior.

One of the consequences is that in a two-socket system
(two NUMA nodes), only half the memory will be used by
the single-thread process (unless consuming a large amount of
memory). It also means that only half the memory bandwidth
from the entire system can be exploited, leaving the second
memory controller in the second socket unused. Another
consequence is that if the code subsequently becomes multi-
threaded (for instance through the use of OpenMP directives),
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Fig. 1. Latency to walk through an array of varying size, from the lat mem rd benchmark

then half the threads will exclusively use remote memory, and
performance will suffer accordingly.

Depending on the kind of workload, there are some simple
heuristics to limit the nefarious effects of NUMA:

Single process, single thread
the default behavior will only use the local NUMA
node as explained. This might be a good thing (it
optimizes the latency) or a bad thing (it cuts the
available memory bandwidth in half). Some code
might benefit from interleaving pages on all nodes,
either by prefixing the command with numactl –
interleave=all, or by replacing the allocation func-
tion such as malloc by a NUMA-specific function
such as numa alloc interleaved.

Multiple processes, each single thread
this is the norm for MPI-based code that does not in-
clude multithreading. The default behavior of Linux
(provided the process have been properly “pinned”
to their CPU) is excellent, as all processes will have
low latency memory, yet the multiplicity of processes
will ensure the use of all memory controllers and
available bandwidth.

Single process, multiple threads
this is the norm for OpenMP-based code. The default
behavior is usually quite bad; more often than not,
the code will cause the allocation of physical pages

on the master thread’s node, despite parallel sections
running on all CPUs. Reading data from a file,
receiving data from the network, explicit non-parallel
zeroing or initialization of the allocated memory
will all lead to this single-node allocation. Forcing
interleaving as above usually helps (by utilizing all
available bandwidth), but is not optimal (it forces the
averaging of latency rather than minimizing it); it still
should be tried first, as it is very easy to implement.
The ideal solution is to be able to place each page
on the node whose threads will make the most use
of it, but that is not a simple task.

Multiple processes, each multiple threads
although it might seem the most complicated case, it
usually isn’t: the typical placement of one process in
each socket, with as many threads as there are cores
in the socket leads to an optimal placement by the
default behavior. No matter which thread allocates
the memory, all the threads of the same process will
see optimal latency.

C. False sharing

False sharing is a long-standing problem in a cache coherent
multi-core machine (it is described as “widely believed to be
a serious problem” by Bolosky and Scott [38]). Modern CPUs
generally use invalidation-based coherency protocol (relevant
details can be found in Culler et al. [39]), whereas every write



to a memory address requires the corresponding cache line to
be present in the local CPU cache with exclusive write access-
that is, no other cache holds a valid copy.

“True sharing” occurs when a single data element is used
simultaneously by more than one CPU. It requires careful
synchronization to ensure respect of the semantic, and incurs a
performance penalty as each update requires the invalidation
of the other CPU’s copy. Back-and-forth can become very
costly but is unavoidable if required by the algorithm (unless,
of course, one changes the algorithm).

“False sharing” occurs when two different data elements are
used by two different CPUs, but happen to reside in the same
cache line. There is no need for synchronization. However,
because the granularity of invalidation is the whole cache
line, each data update by a CPU will invalidate the other
CPU’s copy. This requires costly back-and-forth of the cache
line. This can greatly affect performance and is completely
unnecessary: if the two data elements lived in different cache
lines, no invalidation would occur for either, thus ensuring
maximum performance.

For very small data structures (such as a per-thread counter),
this can be a huge problem as each update will lead to an
unnecessary invalidation. For instance, listing 16 describes a
structure of two elements: neg and pos. Without the interme-
diate padding array pad, those two values would share a cache
line, and when used by two different threads, would cause a
major performance issue. The padding ensures that they are in
different cache lines, thus avoiding the problem. A synthetic
benchmark using this structure running two threads on two
different sockets in a dual X5680 system would see a increase
in time of 50% as opposed to when the padding was not in
use. Hardware counters show a very large number of cache
line replacement in the modified state when padding is not
used, versus a negligible number when it is (cache coherency
and the modified state are well explained by Culler et al. [39]).

Listing 16. Example of false sharing
t y p e d e f s t r u c t {

i n t neg ;
# i f d e f NOCONFLICT

i n t pad [ 1 5 ] ;
# e n d i f

i n t pos ;
} c o u n t e r s ;

For large arrays that are updated in parallel by multiple
threads, the data distribution among threads will be an im-
portant factor. If using a round-robin distribution (i.e. thread
number n out of N total threads updates all elements of indices
m such as n ≡ m (mod N)), then false sharing will occur
on most updates - not good. But if a block distribution was
used, where each thread accesses 1/N of the elements in a
single continuous block, then false sharing only occurs on
cache lines at the boundaries of each block - at most one cache
line will have shared data between two threads. Not only will

the number of unnecessary invalidations be small relative to
the total number of accesses, but they will usually be masked
by the fact that one thread will update at the beginning of the
computation, and the other one at the end, thus minimizing
the effect. And to ensure conflict-free accesses, the block size
that each thread handles can be rounded to a integer multiple
of the cache line size, at the cost of a slightly less efficient
load balancing between threads.

VII. CONCLUSION

This paper introduces a few key points for the newcomer
to keep in mind when trying to improve the performance of
code. To summarize, it is important to be able to justify the
validity of the work done, in terms of reliability, speed and
the choice made when improving the code. Other points are
to properly exploit the tools at hand before modifying the
code, to understand the relation between the data structures
and the performance of the code, avoid re-inventing the wheel
and exploit pre-existing high-performance implementations of
algorithms, and finally run parallel code in a manner adapted
to the underlying hardware.

Hopefully, this will help programmers and scientists alike
to understand some key aspects of performance and obtain
higher performing code without an excessive amount of work.
Happy (performance) programming!
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