
Theoretical Peak FLOPS per instruction set on less
conventional hardware

Romain Dolbeau
Bull – Center for Excellence in Parallel Programming

Email: romain.dolbeau@atos.net

Abstract—This is a companion paper to “Theoreti-
cal Peak FLOPS per instruction set on modern Intel
CPUs” [1]. In it, we survey some alternative hardware for
which the peak FLOPS can be of interest. As in the main
paper, we take into account and explain the peculiarities
of the surveyed hardware.

Revision 1.16, 2016/10/04 08:40:17
Index Terms—FLOPS

I. INTRODUCTION

Many different kind of hardware are in use to
perform computations. No only conventional Cen-
tral Processing Unit (CPU), but also Graphics Pro-
cessing Unit (GPU) and other accelerators. In the
main paper [1], we described how to compute the
peak FLOPS for conventional Intel CPUs. In this
extension, we take a look at the peculiarities of those
alternative computation devices.

II. OTHER CPUS

A. AMD Family 15h

The AMD Family 15h (the name “15h” comes
from the hexadecimal value returned by the CPUID
instruction) was introduced in 2011 and is composed
of the so-called “construction cores”, code-named
Bulldozer, Piledriver, Steamroller and Excavator.
They are sold under different brands including the
server-oriented Opteron brand and the consumer-
oriented Athlon and FX brand.

The specificity of the Bulldozer micro-
architecture [2][3] with regards to the Floating-Point
Unit (FPU) is its shared nature. In Bulldozer and
its offsprings, each pair of cores share a pair of
128 bits wide FPU. Unlike Simultaneous Multi-
Threading (a.k.a. HyperThreading), most of the
resources are duplicated - each core has a full
scheduler, integer pipeline, and so on, an approach

popular at the time [4][5][6]. Only the FPUs are
shared in Bulldozer. We can take a look back at
the equation 1, replicated from the main paper, and
see how this affects the peak FLOPS.

flops

node
=

flop

operation

× operations

instruction

×instructions

cycle


micro− architecture

× cycles

second

× cores

socket

×sockets

node


machine architecture

(1)

For the micro-architecture parts (flop/operation,
operations/instruction, instructions/cycle), we need to take
into account the fact that each FPU pipeline is only
128 bits wide. In the original architecture, Bull-
dozer, all of the extensions to SSE are supported,
plus AVX. Bulldozer also support an FMA4 exten-
sion, which uses different instructions to achieve
the same results as the FMA (a.k.a. FMA3) used
in newer CPUs from Intel and AMD. The results
for the micro-architecture are summarized in ta-
ble I. As can be seen in the table, the number
of instructions/cycle is halved for both full-width
AVX+FMA cases (SP and DP on a 256 bits vector),



since in this case Bulldozer requires both 128 bits
pipelines to execute the 256 bits instruction. Like
Haswell, results for AVX without FMA4 are exactly
half that for AVX when using FMA4.

The second aspect is the fact that the FPUs are
shared between pair of cores. When using more than
one core - i.e. computing the per-node peak - that
means it’s not possible to simply multiply by the
number of cores. Either the number of modules (two
cores each) should be used, or a “sharing” factor
of 1/2 should be added. In the table II, we use a
sharing factor. The table describe a node using four
Opteron 6276, the maximum number of socket for
this processor. The node has therefor 64 cores, but
only 32 shared pair of 128 bits pipelines. Despite
twice as many sockets, more than twice as many
cores, and the same nominal frequency, the full
node based on this processor has less than 60% of
the peak performance at the nominal frequency of
the much newer Intel Haswell E5-2695v3 studied in
the main paper. This is because in effect, averaged
across all cores, Bulldozer can only do 8 flop/cycle
vs. 32 for Haswell.

The last micro-architecture from the family is
Excavator, which has support for the FMA(3) ex-
tension to AVX in addition to FMA4; this does
not change the peak. The upcoming Zen micro-
architecture will likely retain the pair of 128 bits
wide FMA-capable pipelines, but will not share
them between cores, thus doubling the peak at node
level with the same number of core at the same
frequency.

B. Intel Knights Landing

Intel Knights Landing is the code-name for the
Intel Xeon Phi 72xx family of processors. Knights
Landing offers all instructions sets from the Haswell
(and its successor Broadwell with the exception
of TSX), with the addition of the new AVX-512
instruction set. AVX-512 leverages a new encoding
scheme called EVEX, which fortunately is compat-
ible with the VEX encoding scheme of AVX, so
both can cohabitate in the same program. Knights
Landing offers the same theoretical flop/cycle for
the SSE and AVX instruction sets than Haswell
(and Broadwell), but with slightly longer producer-
consumer latencies [7][8]. Knights Landing also
offers two full-width AVX-512 pipelines, allowing

up to double the flop/cycle when the new instructions
are in use. Knights Landing can therefore do up
to 32 flop/cycle in double-precision, and up to 64
flop/cycle in single-precision. In a manner similar
to Haswell, Knights Landing has both a Turbo
frequency (higher than nominal) and a base AVX
frequency (lower than nominal).

C. ARM Cortex A57

The ARM Cortex A57 [9] is an implementation
of the ARM v8 [10] architecture. Floating-point
operations in ARM v8 are done with the NEON
instructions set. Like SSE, NEON has both scalar
and vector instructions. Unlike SSE, the vector
variants exist in both 64 bits (called the D form,
referring to a double-word where a word is 32
bits) or 128 bits (called the Q form, referring to
a quadruple-word). Registers are always 128 bits,
and in ARM v8 the D form (64 bits) instructions
works on the lower half of the 128 bits registers,
never the high part.

In the Cortex A57, there is two 64 bits pipelines
for NEON floating-point operations. If D form in-
structions are used, they can be dispatched to both
pipelines simultaneously. If Q form instructions are
used, then they are dispatched to both pipelines
simultaneously, aggregating the two 64 bits pipeline
into a single 128 bits pipeline. This is the same
mechanism used by AMD in the Bulldozer, but
with half the width. As shown in table III, the
peak in practice is therefor the same for the D
and Q forms. The only difference is that in the Q
form, twice as much register space is available. And
since the D form is effectively scalar for double-
precision operations, there is no theoretical gain
from vectorization on the A57 in double-precision.

TABLE III
THEORETICAL PER-CYCLE PEAK FOR CORTEX A57

NEON NEON NEON NEON NEON
(Scalar) D (DP) D (SP) Q (DP) Q (SP)

flop/operation 2 2 2 2 2
×operations/inst. 1 1 2 2 4
×instructions/cycle 2 2 2 1 1
=flop

/cycle

4 4 8 4 8



TABLE I
THEORETICAL PER-CYCLE PEAK FOR BULLDOZER

SSE SSE SSE AVX+FMA4 AVX-128 AVX-128 AVX+FMA4 AVX+FMA4
(Scalar) (DP) (SP) (scalar) +FMA4 (DP) +FMA4 (SP) (DP) (SP)

flop/operation 1 1 1 2 2 2 2 2
×operations/inst. 1 2 4 1 2 4 4 8
×instructions/cycle 2 2 2 2 2 2 1 1
=flop /cycle 2 4 8 4 8 16 8 16

TABLE II
THEORETICAL PER-NODE PEAK FOR OPTERON 6276 (NOMINAL FREQUENCY)

SSE SSE SSE AVX+FMA4 AVX-128 AVX-128 AVX+FMA4 AVX+FMA4
(Scalar) (DP) (SP) (scalar) +FMA4 (DP) +FMA4 (SP) (DP) (SP)

flop/cycle 2 4 8 4 8 16 8 16
×cycles/second 2.3G 2.3G 2.3G 2.3G 2.3G 2.3G 2.3G 2.3G
×cores/socket 16 16 16 16 16 16 16 16
×sharing 1/2

1/2
1/2

1/2
1/2

1/2
1/2

1/2
×sockets/node 4 4 4 4 4 4 4 4
=flops

/node

147.2G 294.4G 588.8G 294.4G 588.8G 1177.6G 588.8G 1177.6G

D. AppliedMicro X-Gene
The AppliedMicro X-Gene 1 and X-Gene 2 [11]

are both, like the A57, implementation of the
ARM v8 architecture. They share instructions sets
and registers with the A57. However, the design of
the X-Gene 1 only has a single 64 bits pipeline for
floating-point operations. The Q form instructions
require two consecutive cycles to execute. As shown
in table IV, the X-Gene 1 only has half the per-cycle
peak of the A57, and also does not benefit from
vectorization in double-precision other than the gain
in register space.

TABLE IV
THEORETICAL PER-CYCLE PEAK FOR X-GENE 1

NEON NEON NEON NEON NEON
(Scalar) D (DP) D (SP) Q (DP) Q (SP)

flop/operation 2 2 2 2 2
×operations/inst. 1 1 2 2 4
×instructions/cycle 1 1 1 1/2

1/2
=flop

/cycle

2 2 4 2 4

E. Future Scalable Vector Extensions to ARM v8
In 2016, ARM announced the Scalable Vector

Extensions [12], an new instruction set for the
ARM v8 architecture. With registers up to 2048

bits wide and FMA support, this new instruction set
could bring very high theoretical peak performance.
However, each manufacturer will have to select
a register width between 128 and 2048 bits, and
may or may not choose to implement multiple
instructions per cycle. Until some specific micro-
architecture is released, it is impossible to quantify
what performance SVE will offer in practice.

III. NVIDIA GPUS

Computing the number of theoretical peak
FLOPS for NVidia GPU should be complicated,
since one can argue about the semantic of terms
such as core, thread and vectorization in the context
of GPGPU programming. However, NVidia makes
it much easier by fully documenting the implemen-
tation of its GPUs. The CUDA C Programming
Guide [13] contains detailed description of the var-
ious generations of GPU, with code-names such
Fermi, Maxwell or Pascal. Each GPU can report
its “CUDA Compute Capability”, which is effec-
tively its micro-architecture. For each “Compute
Capability”, NVidia details how many instructions
of different kind a single “multiprocessor” can do.
A “Multiprocessor”, in this context, is the base unit
from which the actual GPUs are built. So from the



Fig. 1. Extract from the CUDA documentation

table in section 5.4.1 of the CUDA C Programming
Guide [14], one can look at the lines:

• “32-bit floating-point add, multiply, multiply-
add” for single-precision operations;

• “64-bit floating-point add, multiply, multiply-
add” for double-precision operations1.

The relevant extract from the documentation
is shown in figure 1. The number in this
line and in the column for the chosen “Com-
pute Capability” effectively indicates the prod-
uct operations/instruction ×instructions /cycle. Since all
NVidia GPUs implements a fused multiply-add,
flop/operation is always two. The frequency and the
number of multiprocessors indicated in the specifi-
cations of the specific device will supply cycles/second
and ×cores/socket. The “Compute Capability” for
each device are listed in NVidia website [15]. If the
number of multiprocessors is not explicitly listed,
it can be found by software or can be computed
by dividing the number of “CUDA cores” from the
specifications by the line “32-bit floating-point add,
multiply, multiply-add” from [14].

In single- and double-precision, all instructions
are scalar on the NVidia GPUs, thus simplify-
ing the discussion. However, the Maxwell micro-
architecture introduced hardware half-precision in-
structions in “Compute Capability 5.3”. The CUDA
C Programming Guide announces twice as many
instructions per cycle in half-precision as in single-
precision, but this is misleading. In fact, the
throughput in instructions is the same, but the
“Compute Capability 5.3” hardware introduces sup-
port for vector instructions of vector length 2 in
registers of 32 bits. If those instructions are not
used (i.e. there is no vectorization, only the thread-

1Beware that consumer-grade GPU might have degraded double-
precision performance compared to their compute-oriented siblings;
this is documented in footnotes of the aforementioned table.

level parallelism inherent to kernel programming in
CUDA), then the peak FLOPS in half-precision is
the same as in single-precision, not twice as much.

As an example, one can consider the GeForce
GTX 980 device, a gaming GPU of the Maxwell
micro-architecture (“Compute Capability 5.2”). As
such, it has 128 SP FMA per cycle per multipro-
cessor, 4 (!) DP FMA per cycle per multiprocessor,
2048 “CUDA cores” translating to 2048/128 = 16
multiprocessors and a base clock of 1064 MHz. It’s
theoretical peak is therefore:
SP 2 × 128 × 16 × 1064, or approximately

4.36Gflop/s;
DP 2 × 4 × 16 × 1064, or approximately

136Mflop/s.

IV. FPGA

A field-programmable gate array (FPGA) is a
compute device that can be reconfigured, i.e. the
hardware itself can be “programmed” for specific
functions. As such, the amount of floating-point
capability is highly variable. A given FPGA has
a fixed amount of resources, which will be used
to implement the various functions needed. Only a
fraction of the resources will be used for floating-
point. And since the amount of resources is de-
pendent on accuracy [16], the implementations de-
tails [17], etc., it is impossible to give a peak number
for any given FPGA. One need to first implement
and synthesize the design, and then compute the
peak for this design from the attainable frequency
and the amount of operators used in the design.

V. CONCLUSION

In this companion paper to “Theoretical Peak
FLOPS per instruction set on modern Intel
CPUs” [1], we take a quick look at some alternative
hardware. Merged pipelines, half-width execution



units, shared resources between cores and unex-
pected ratio of single- to double-precision perfor-
mance make computations of theoretical FLOPS an
interesting exercise that requires some understand-
ing of the underlying micro-architecture.

GLOSSARY

AVX The third SIMD instruction set for the x86
architecture. It uses 256 bits wide registers. The
original AVX instruction set only support float-
ing point operations. AVX2 introduced integer
operations. 1, 5

AVX2 First extension to the AVX instruction set,
adding integer operations. 5

Central Processing Unit The part of a computer
or computing device that executes the instruc-
tions of one or more programs. In the modern
era, CPUs are composed of multiple cores, plus
supporting functions such as shared caches,
I/O functions, and so on. The physical CPU
is commonly fitted in a socket. 1, 5

core The base hardware unit required to execute
a program. Each core has access to all sub-
components needed to execute user-land pro-
grams: ALU, FPU, branch, load & store, etc.
A single core may have the ability to run more
than one program simultaneously, in which
case the core resources are shared (statically
or dynamically) between the programs. This
is called Simultaneous Multi-Threading, and
is known commercially as HyperThreading for
Intel processors. 1, 5

CPU Central Processing Unit. 1
CPUID instruction The CPUID instruction is a

mechanism for x86 and x86-64 architectures
by which software can tell among other things
which instruction sets are supported in a par-
ticular CPU. 1

encoding scheme The encoding is the binary rep-
resentation of an instruction, directly usable
by the processor. An encoding scheme is the
description of how to encode the various in-
structions. The AVX encoding scheme differs
from the SSE encoding scheme, as it adds some
extra bytes to enable the use of wider registers
and extra operands. 2

Floating-Point Unit The computation unit respon-
sible for floating-point operations. It can be

composed of multiple execution units, each of
which are sometimes also called FPU. It can
be scalar (such as the x87 FPU, or SIMD (such
as SSE or AVX). 1, 5

FPU Floating-Point Unit. 1, 5
Graphics Processing Unit A computing device

originally dedicated to the generation of images
to be rendered on a screen. In the modern
computing era, GPUs are massively parallel
computation engines capable of doing many
kind of computations. 1

instruction set A group of instructions that are
available - or not - in a micro-architecture. The
instruction set with the mandatory instructions
is the base instruction set, such as x86 or its
64 bits variant x86-64. Additional instruction
sets such as x87, SSE or AVX provide addi-
tional instructions to expand the capability of
a processor. 5

NEON The SIMD instruction set for the ARM v7
and ARM v8 architecture. It uses 128 bits
wide registers. In ARM v7 NEON does not
support double-precision operations, but it does
in ARM V8. . 2

SSE The second SIMD instruction set for the x86
architecture. It uses 128 bits wide registers.
The original SSE instruction set only sup-
port integer and single-precision floating point
operations. SSE2 introduced double-precision
floating-point operations. Both SSE and SSE2
are required in x86-64 (64 bits) processors. 1,
2, 5

SSE2 First extension to the SSE instruction set,
adding double-precision floating point opera-
tions. 5

x87 It is the common abbreviation for the first, now
obsolete, floating-point extension to the x86
architecture. See e.g. [18] for details. 5

REFERENCES

[1] R. Dolbeau, “Theoretical Peak FLOPS per instruction
set on modern Intel CPUs,” 2015. [Online]. Available:
http://www.dolbeau.name/dolbeau/publications/peak.pdf

[2] M. Butler, L. Barnes, D. D. Sarma, and B. Gelinas, “Bull-
dozer: An approach to multithreaded compute performance,”
IEEE Micro, vol. 31, no. 2, pp. 6 – 15, 2011.

[3] M. Butler, “Bulldozer: a new approach to multi-threaded com-
pute performance,” in Hot Chips 22 Symposium (HCS), 2010
IEEE. IEEE, 2010, pp. 1–17.

http://www.dolbeau.name/dolbeau/publications/peak.pdf


[4] R. Dolbeau and A. Seznec, “CASH: Revisiting hard-
ware sharing in single-chip parallel processor,” Journal of
Instruction-Level Parallelism, vol. 6, pp. 1–16, 2004.

[5] R. Kumar, N. P. Jouppi, and D. M. Tullsen, “Conjoined-
core chip multiprocessing,” in Proceedings of the 37th annual
IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society, 2004, pp. 195–206.

[6] A. Shayesteh, “Factored multi-core architectures,” Ph.D. disser-
tation, University of California Los Angeles, 2006.

[7] A. Fog, “Instruction tables: Lists of instruction latencies,
throughputs and micro-operation breakdowns for Intel, AMD
and VIA cpus,” Copenhagen University College of Engineering,
1996 – 2014. [Online]. Available: http://www.agner.org/
optimize/instruction tables.pdf

[8] Intel R©, “Intel R© Xeon PhiTM Processor Software Optimization
Guide,” no. 334541-001, June 2016. [Online]. Avail-
able: https://software.intel.com/sites/default/files/managed/11/
56/intel-xeon-phi-processor-software-optimization-guide.pdf

[9] ARM R©, “Cortex-A57 processor.” [Online].
Available: https://www.arm.com/products/processors/cortex-a/
cortex-a57-processor.php

[10] R. Grisenthwaite, “Armv8 technology preview,” in IEEE
Conference, 2011.

[11] A. Y. G. Singh, G. Favor, and A. Yeung, “AppliedMicro X-

Gene 2,” in HotChips, 2014.
[12] N. Stephens, “Technology update: The scalable

vector extension (sve) for the armv8-a
architecture,” 2016. [Online]. Available: https:
//community.arm.com/groups/processors/blog/2016/08/22/
technology-update-the-scalable-vector-extension-sve-for-the-armv8-a-architecture

[13] NVidia, “CUDA C Programming Guide.” [Online]. Available:
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

[14] ——, “CUDA C Programming Guide: 5.4.1. Arithmetic
Instructions.” [Online]. Available: http://docs.nvidia.com/cuda/
cuda-c-programming-guide/#arithmetic-instructions

[15] ——, “CUDA GPUs.” [Online]. Available: https://developer.
nvidia.com/cuda-gpus

[16] D. M. Muñoz, D. F. Sanchez, C. H. Llanos, and M. Ayala-
Rincón, “Tradeoff of FPGA design of a floating-point library
for arithmetic operators,” Journal of Integrated Circuits and
Systems, vol. 5, no. 1, pp. 42–52, 2010.

[17] B. Lee and N. Burgess, “Parameterisable floating-point oper-
ations on FPGA,” in Signals, Systems and Computers, 2002.
Conference Record of the Thirty-Sixth Asilomar Conference
on, vol. 2. IEEE, 2002, pp. 1064–1068.

[18] Wikipedia. x87. [Online]. Available: https://en.wikipedia.org/
wiki/X87

http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
https://software.intel.com/sites/default/files/managed/11/56/intel-xeon-phi-processor-software-optimization-guide.pdf
https://software.intel.com/sites/default/files/managed/11/56/intel-xeon-phi-processor-software-optimization-guide.pdf
https://www.arm.com/products/processors/cortex-a/cortex-a57-processor.php
https://www.arm.com/products/processors/cortex-a/cortex-a57-processor.php
https://community.arm.com/groups/processors/blog/2016/08/22/technology-update-the-scalable-vector-extension-sve-for-the-armv8-a-architecture
https://community.arm.com/groups/processors/blog/2016/08/22/technology-update-the-scalable-vector-extension-sve-for-the-armv8-a-architecture
https://community.arm.com/groups/processors/blog/2016/08/22/technology-update-the-scalable-vector-extension-sve-for-the-armv8-a-architecture
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/#arithmetic-instructions
http://docs.nvidia.com/cuda/cuda-c-programming-guide/#arithmetic-instructions
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://en.wikipedia.org/wiki/X87
https://en.wikipedia.org/wiki/X87

	Introduction
	Other CPUs
	AMD Family 15h
	Intel Knights Landing
	ARM Cortex A57
	AppliedMicro X-Gene
	Future Scalable Vector Extensions to ARM v8

	NVidia GPUs
	FPGA
	Conclusion
	Glossary
	References

