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Abstract—It used to be that evaluating the theoretical
peak performance of a CPU in FLOPS (floating point
operations per seconds) was merely a matter of multiplying
the frequency by the number of floating-point instructions
per cycles. Today however, CPUs have features such
as vectorization, fused multiply-add, hyper-threading or
“turbo” mode. In this paper, we look into this theoretical
peak for recent full-featured Intel CPUs., taking into
account not only the simple absolute peak, but also the
relevant instruction sets and encoding and the frequency
scaling behavior of current Intel CPUs.
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I. INTRODUCTION

High performance computing thrives on fast com-
putations and high memory bandwidth. But before
any code or even benchmark is run, the very first
number to evaluate a system is the theoretical peak
- how many floating-point operations the system
can theoretically execute in a given time. The most
common measurement is the FLOPS, floating-point
operations per second. The simple view is: the more
FLOPS, the better.

However, evaluating the peak FLOPS is not as
easy as it looks. It used to be that multiplying the
number of floating-point operations per cycle by the
number of cycles per second was enough. It was the
simple equation in equation 1. A node is a single
computer (perhaps part of a cluster), and it’s easy to
define it’s speed. It has only one super-scalar core,
no fancy vector, and this is the early 1990s.
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node
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flops
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But since then, many level of parallelism have
been introduced. Multiple physical silicon devices
per nodes (“socket”), each with multiple cores,

and potentially multiple threads per core. Vector of
varying sizes. And more sophisticated instructions.
Equation 2 describes a more realistic view, that we
will explain in details in the rest of the paper, first
in general in section II and then for the specific
cases of Intel CPUs: first a simple one from the
Nehalem/Westmere era in section III and then the
full complexity of the Haswell family in section IV.
A complement to this paper titled “Theoretical Peak
FLOPS per instruction set on less conventional
hardware” [1] covers other computing devices.
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II. CONTRIBUTION TO THE PEAK

In this section, we will detail the meaning of
each part of equation 2. Of course, they are not
fully independent, as explained in each relevant
section. As indicated in equation 2, the first three
are part of the micro-architecture (how the CPU



is designed), whereas the last three are part of
the machine architecture (how many devices, which
devices, what speed).

A. flop/operation: instructions
How many floating point “operation” (in the

mathematical sense of the word) are embedded in
the semantic of the instruction. Usually, most time-
consuming operations (such as division) are simply
not taken into account, and only the simplest and
most relevant are counted: addition, subtraction,
multiplication. They all count as one. So any in-
struction encoding one of those operations is repre-
sented by the ratio 1/1, whereas the quite common
fused multiply-add (or any variant) d = a× b+ c is
represented by the ratio 2/1.

B. operations/instruction: vector
How many (group of) operations are executed

simultaneously by an instruction. This is the so-
called “vector” or “SIMD” mode. If an instruction
uses vector of 4 elements as operands, then each
of the mathematical operation(s) are executed four
times, for a ratio of 4/1. This can vary greatly,
from 1/1 for “scalar” instructions, to 16/1 for single-
precision floating-point in an AVX-512 vector of 64
bytes.

C. instructions/cycle: super-scalar
How many instructions can be executed simulta-

neously in a cycle. This is trickier than it sounds.
For instance, do Intel processors take into account
the legacy x87 Floating-Point Unit (FPU)? Or only
the SIMD units? The general question is, are those
instructions homogeneous enough - in terms of the
previous two factors - to be represented by a simple
fraction ? Usually yes, as we can for instance simply
ignore the legacy FPU and the complex instructions
such as division. So if a CPU can do two fused
multiply-add at once, the ratio will be 2/1; for two
arbitrary single-operation instruction (add, sub, mul)
again a ratio of 2/1; and a fused multiply-add in
parallel with a single-operation instruction can be
encompassed by a ratio of 3/2. The real complexity
comes from CPU with non-scalar floating-point
units where less than one instruction per cycle is
possible - then more complex calculations have to
be made. Fortunately, few modern CPUs are in that
category.

D. cycles/second: frequency
How many cycles in a second. While it sounds

as the easiest factor to compute, it can be quite
tricky as well. Modern CPUs feature “turbo” mode
whereas some of the cores can have a higher speed
than nominal. Energy-saving mode lower the fre-
quency. Recent Intel CPUs have a different base
frequency when exploiting certain instructions, in
particular AVX instructions - the very instructions
we are trying to count.

E. cores/socket & sockets/node: multi-core
How many cores in a node, computed with the

two factors. However, care should be taken: while
hyper-threading (or simultaneous) adds additional
resources to the processors seen as “cores” by the
operating system, it does not add execution units. So
the number of cores does not take hyper-threading
into account.

III. AN EASY INTEL CPU:
NEHALEM/WESTMERE

The first case study are the older Intel CPUs from
the Nehalem or Westmere generation1. Those CPUs
use the SSE2 SIMD instruction set for floating-
point operations. This instruction set features 128
bits (16 bytes) registers, capable of holding either 2
double-precision or 4 single-precision elements. The
instruction set does not support fused multiply-add.
But it does support a scalar mode, with only one
element used per vector register. Table I summarizes
the number of FLOPS per cycle one can expect from
the Nehalem family in the three possible modes -
scalar, vector single-precision and vector double-
precision. The value for scalar applies to both single
and double precision.

Then for a given CPU model we can add the
specific data (frequency, core per socket, socket per
node) and obtain the raw per-node theoretical peak,
as is done in figure II for the Xeon X5650[2]. This
however is an approximation - as the description of
the CPU signals, “turbo” mode allows some core to

1Most processors even older than Nehalem but supporting SSE2
would fall into the same category. Strictly speaking, SSE only sup-
ports single-precision floating-point operations, and SSE2 supports
double-precision. Processor without SSE2 have to rely on x87 for
double-precision arithmetic, and are not considered. In the remainder
of this paper, the term SSE will be used to describe the SSE & SSE2
combination, since both are mandatory on all x86-64 processors.



TABLE I
THEORETICAL PER-CYCLE PEAK FOR NEHALEM/WESTMERE

SSE (Scalar) SSE (DP) SSE (SP)
flop/operation 1 1 1

×operations/instruction 1 2 4
×instructions/cycle 2 2 2
=flop /cycle 2 4 8

go up to 3.06 GHz, something we have not taken
into account.

TABLE II
THEORETICAL PER-NODE PEAK FOR X5650

SSE (Scalar) SSE (DP) SSE (SP)
flop/cycle 2 4 8

×cycles/second 2.67G 2.67G 2.67G
×cores/socket 6 6 6
×sockets/node 2 2 2
=flops /node 64G 128G 256G

IV. THE COMPLEX CASE: THE HASWELL FAMILY

The Intel Haswell (a.k.a. Xeon E5 v3) family is
much more complex to evaluate. First we will talk
about the various SIMD modes, and then about the
frequency of the cores.

A. Instruction sets

1) Description: Up to and including the West-
mere family described above, the only vector mode
was SSE. However, Intel has since introduced a
new encoding scheme and instruction set in the
Sandy Bridge micro-architecture, known as AVX,
which pushed vector register sizes to 256 bits (32
bytes)2. It then extended AVX with new instructions
in the Haswell micro-architecture, such as integer
operations and a “gather” operation, in an instruc-
tion set known as AVX2. The encoding scheme and
instructions are described in [5]. Intel also intro-
duced in Haswell the FMA instruction set, which
is commonly described as AVX2, even though it is
technically distinct with its own flag in the CPUID
instruction. Suffice to say that the Haswell family
supports all of those - SSE, AVX, AVX2 and FMA.
It is therefore possible to access floating point

2Another encoding scheme will follow with the processor code-
names “Knights Landing” and “Skylake” [3][4])

operations in the following ways (always ignoring
the legacy x87 FPU):

1) SSE-encoded scalar mode;
2) SSE-encoded double-precision vector mode;
3) SSE-encoded single-precision vector mode;
4) AVX-encoded scalar mode;
5) AVX-encoded 128 bits double-precision vector

mode;
6) AVX-encoded 128 bits single-precision vector

mode;
7) AVX-encoded 256 bits double-precision vector

mode;
8) AVX-encoded 256 bits single-precision vector

mode;
9) AVX-encoded scalar mode (with FMA)

10) AVX-encoded 128 bits double-precision vector
mode (with FMA);

11) AVX-encoded 128 bits single-precision vector
mode (with FMA);

12) AVX-encoded 256 bits double-precision vector
mode (with FMA);

13) AVX-encoded 256 bits single-precision vector
mode (with FMA);

That is no less than thirteen different ways of
computing on floating-point data. The first three (1–
3) and last two (12, 13) seems pretty obvious. The
first three are mentioned in the previous section.
The last two are the new 256 bits-wide instructions
with FMA support from Haswell, which are well
known. However, AVX-encoded instructions are not
behaving well with the older, SSE-encoded 128
bits instructions and should not be mixed. Also,
SSE is a two-operand instruction set (the output
share a register with an input) whereas AVX is
a three-operand instruction set (neither input are
overwritten by the output). For those reasons, the
AVX encoding scheme includes the re-encoding
with three operands of all SSE instructions (later
shortened to AVX-128), both scalar and 128 bits-
wide vector instructions, creating another three ways
(9–11). Finally, in the middle (4–8) there is the non-
FMA version of AVX (from the “Sandy Bridge” and
“Ivy Bridge” families), which can be compiled and
run on Haswell without the benefit of FMAs.

It may seem pedantic to mention all those, but
they are quite important. First, as mentioned, the
new encoding scheme allows three operands, thus



potentially removing spurious “move” instructions,
and generally making life easier for the compiler
or the assembly programmer. Second, for code
written using Intel intrinsics functions for SSE,
the compiler can generate them using AVX-128
instructions, benefiting both from the new three
operands scheme and compatibility with AVX-256.
Third, codes that fail to vectorize properly and are
therefore “scalar” still can exploit the new fused
multiply-add operations, available in AVX-encoded
scalar but not SSE-encoded scalar. Finally, all those
variant can be generated by the compiler - knowing
how the code was compiled will constrain which
variant was used, and therefore the attainable peak.
Table III summarizes the flop/cycle for the Haswell
family. The non-FMA variants of AVX are not in
the tables: they have exactly half the flop/operation
of the corresponding FMA variants, and for AVX-
128 without FMA they have the same peak as the
corresponding SSE variant.

We can now add the specific data (frequency,
core per socket, socket per node) for a model and
obtain the raw per-node theoretical peak, as is done
in figure IV for the Xeon E5-2695 v3[6]. Again
we only consider the nominal frequency, something
we will revisit in the next section. As can be
seen in the last line of the table, theoretical peak
is a relative terms, since there is a factor of 16
between a non-vectorized code encoded in SSE
(which doesn’t have access to the fused multiply-
add) and a full-vector single-precision code encoded
in AVX (which has a vector width of 8, and can do
two FMAs per cycle).

2) Note on instruction mix: As mentioned in
section II-C, the number of instructions per cycle is
an approximation in some cases, since some CPU
will support only some mix of instructions. This is
the case for Intel processor, although it does not
affect the ratio itself. It is nonetheless interesting to
specify the capabilities of the instructions pipeline.
SSE, AVX SSE and AVX (without FMA) are im-

plemented by Intel with the same capabilities.
They have the ability to issue one multipli-
cation and one addition (or subtraction) si-
multaneously, hence the two instructions per
cycle. Independent multiplications cannot run
together, and neither can independent addi-
tions.

FMA aka AVX2 The Haswell core has the capa-
bility to execute two FMA per cycle, again
hence the two instructions per cycle. However
the two pipelines are not identical. Pipeline
0 has the ability to execute multiplications
and long-running (and mostly ignored here)
instructions such as division and reciprocal, but
it does not support additions. Pipeline 1 has the
ability to execute multiplications and additions.
So a pair of independent additions will not be
able to execute simultaneously. It is possible
to use a FMA as a substitute for an addition,
but care has to be taken since the latency of
the FMA is higher than that of an addition (5
cycles vs. 3 cycles).

B. Frequency

Unfortunately, the base frequency is no longer a
reliable measure to estimate peak performance. As
detailed by Intel in [7], Intel now specifies no less
than four different frequencies for its CPUs, with the
last two being new in server-class Haswell CPUs:

• The “marked TDP frequency”, the one used up
to that point in this paper and usually referred
to in marketing materials, the minimum fre-
quency for all (now only non-AVX) workloads;

• The “turbo frequency”, the maximum fre-
quency any one core can attain;

• The “AVX base frequency”, the minimum fre-
quency for AVX workloads;

• The “AVX max all core turbo”, the maximum
frequency reachable on any one core for AVX
workloads.

Another Intel document [8] is full of tables detail-
ing the maximum turbo frequencies for the normal
and AVX case depending on how many cores are
in use, including the above values. We learn about
our chosen CPU that our four frequencies are:

• Base: 2.3 GHz (table 2 page 8 of [8])
• Turbo: 3.3 GHz
• AVX Base: 1.9 GHz (table 3 page 10 of [8])
• AVX all Max: 3 GHz
Apparently, the computation in table IV are sig-

nificantly overestimating the peak - we lose over
17% due to the 1.9 GHz instead of 2.3 GHz
frequency. But that’s not the whole story - those
frequencies are in fact not enough to specify a



TABLE III
THEORETICAL PER-CYCLE PEAK FOR HASWELL

SSE SSE SSE AVX+FMA AVX-128 AVX-128 AVX+FMA AVX+FMA
(Scalar) (DP) (SP) (scalar) +FMA (DP) +FMA (SP) (DP) (SP)

flop/operation 1 1 1 2 2 2 2 2
×operations/instruction 1 2 4 1 2 4 4 8
×instructions/cycle 2 2 2 2 2 2 2 2
=flop /cycle 2 4 8 4 8 16 16 32

TABLE IV
THEORETICAL PER-NODE PEAK FOR E5-2695 V3

SSE SSE SSE AVX+FMA AVX-128 AVX-128 AVX+FMA AVX+FMA
(Scalar) (DP) (SP) (scalar) +FMA (DP +FMA (SP) (DP) (SP)

flop/cycle 2 4 8 4 8 16 16 32
×cycles/second 2.3G 2.3G 2.3G 2.3G 2.3G 2.3G 2.3G 2.3G
×cores/socket 14 14 14 14 14 14 14 14
×sockets/node 2 2 2 2 2 2 2 2
=flops /node 128.8G 257.6G 515.2G 257.6G 515.2G 1030.4G 1030.4G 2060.8G

part. The maximum “turbo” frequency are fully
defined depending on how many cores are in use,
and even with all cores running the maximum turbo
frequency (with or without AVX) is much higher
than its respective base frequency, although lower
than the one core “Turbo” frequency. If we take
those minimum and maximum “turbo” frequency
into account, we obtain table V for a node of two
sockets. Note that even when using all 14 cores in
each socket, we can still reach a frequency of 2.6
GHz - not only 0.7 GHz more than the AVX Base
Frequency, but still 0.3 GHz more than the Base
frequency.

C. Practical measurements

The best way to confirm a theory is to try it in
practice. In this section, we are going to measure
observed throughput of instructions, match it against
the known characteristics of the Haswell architec-
ture, and deduce the operating frequency in various
cases.

1) Methodology: We start with a very simple
code that simply feed sequence of identical instruc-
tions, and measure the time taken to execute the
sequence. Knowing the sequence and the pipeline,
we can define the theoretical throughput - the num-
ber of cycle per instructions the core will take to
execute the sequence. From this, we can deduce the

total number of cycles. Combined with the wall-
clock measurement, we can deduce the operating
frequency. There is no point in directly using the
time-stamp counter (TSC) in recent Intel CPUs for
reason other than validation, as in Haswell the TSC
always run at the nominal (base) frequency of the
CPU, a feature known as an “invariant TSC”.

So for instance, if we only compute AVX vector
shift, then we know from [9] page 193 that we can
execute one per cycle and the producer-consumer
latency is one cycle. Therefore any sequence of such
vector shifts will take as many cycles as there is
instructions. So if we build a sequence of 8192 and
loop over it 2048 times, we expect an execution time
of 8192× 2048 = 16777216 cycles. If we measure
a time of approximately 5.6 milliseconds, then we
are running at 16777216/(5.6×10−3) ≈ 3×109, or
approximately 3 GHz.

This process can be done for many instruction
types, and with two different pipeline filling: either
running many independent instructions to fill the
pipeline as much as possible, or with sequentially
dependent instructions. We can then run from one
to as many threads as there is core in the socket.

For this paper, we tried the following cases:

vfma AVX2-256 FMA, filling the pipeline to 4/5
(8 FMAs in 5 cycles);

vfmadep AVX2-256 FMA, sequentially dependent



TABLE V
TURBO-DEPENDANT PEAK DUAL E5-2695 V3 NODE USING AVX+FMA DP

activecores/socket 1 2 3 4 5 6 7 8 9 10 11 12 13 14
AVX freq
(min)

1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9

AVX freq
(max)

3 3 2.8 2.7 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6

AVX DP
Flops (min)

60.8 121.6 182.4 243.2 304.0 364.8 425.6 486.4 547.2 608.0 668.8 729.6 790.4 851.2

AVX DP
Flops (max)

96 192 268.8 345.6 416.0 499.2 582.4 665.6 748.8 832.0 915.2 998.4 1081.6 1164.8

(1 FMA every 5 cycle);
vshift AVX2-256 vector shift (an integer instruc-

tion, one per cycle);
vpaddd AVX2-256 vector add (an integer instruc-

tion, two per cycle);
vmulpd AVX-256 MUL, filling the pipeline to 4/5

(8 MULs in 5 cycles, on Haswell);
vmulpd128 AVX-128 MUL, filling the pipeline to

4/5 (8 MULs in 5 cycles, on Haswell);
mulpd SSE MUL, filling the pipeline to 4/5 (8

MULs in 5 cycles, on Haswell).

This way we can verify the throughput and la-
tency of the main FPU instruction (FMA), integer
workload filling one or two vector pipeline, and
compare AVX and SSE encoding.

The 4/5 figure (8 operations in 5 cycles) for
FMAs and MULs are a side-effect of the way the
sequences are built. A block of 8 operations use
8 different AVX (or SSE) registers as both input
and output (this is mandatory for SSE where the
output register is always one of the input, and we
re-use the same pattern for three-operands AVX
instructions). The block is then repeated to create
the long sequence, thus creating a dependency chain
between each consecutive block of 8 operations: no
instruction in a block can be scheduled until the
same instruction of the previous block is complete.
Since the producer-consumer latency for FMAs and
MULs is 5 cycles, it takes at least 5 cycles between
each block, thus 8 operations in 5 cycles. As on
the Haswell architecture two such instructions can
be executed in one cycle, or 10 instructions in 10
cycles, the pipeline is only filled to 8/10 or 4/5.

2) Effect of threads: When running single thread,
we expect AVX instructions to run (per table V) at
3 GHz. The actual output for the peak frequency

observed is (output is rounded to 33 MHz for
clarity):

----------------
0
----------------

vfma: 3000 MHz
vfmadep: 3000 MHz
vshift: 3300 MHz
vpaddd: 3300 MHz
vmulpd: 3000 MHz

vmulpd128: 3300 MHz
mulpd: 3300 MHz

Apparently, the AVX frequency is limited to
256 bits floating-point AVX-encoded instructions.
All of the vector integer operations, the 128
bits floating-point AVX-encoded operations and the
SSE-encoded floating point operations are running
at the maximum frequency of 3.3 GHz on this
particular E5-2695 v3. Whether the pipelines are
saturated by the FMAs or not does not change the
running frequency.

We get the same results for 2 threads, as docu-
mented, and the following for three threads:

----------------
[0-2]
----------------

vfma: 2900 MHz
vfmadep: 2900 MHz
vshift: 3100 MHz
vpaddd: 3100 MHz
vmulpd: 2900 MHz

vmulpd128: 3100 MHz
mulpd: 3100 MHz

The 3.1 GHz is a match for table 2 in [8], but
the 2.9 GHz for AVX instructions is 100 MHz



higher than documented. This intriguing behavior
is also visible at four and five cores. From six cores
onward, the frequency are stuck at 2.6 and 2.8 GHz,
exactly as documented:

----------------
[0-13]
----------------

vfma: 2600 MHz
vfmadep: 2600 MHz
vshift: 2800 MHz
vpaddd: 2800 MHz
vmulpd: 2600 MHz

vmulpd128: 2800 MHz
mulpd: 2800 MHz

3) Example: The practical results are illustrated
in figure 1, representing the speed of execution of
a basic finite difference kernel inside a socket. The
kernel is full vectorized in AVX2 (with FMA). As
is immediately noticeable, the kernel does not scale
very well with the number of threads for that partic-
ular test case (this is a stand-alone kernel extracted
from a real-life application). Activating the turbo
gives an instant speed-up for every possible number
of active threads, but the benefits are clearly higher
for a small number of threads, where the turbo is
the most effective. The light grey line represents a
time of 1.5 seconds, close to the asymptotic speed
without turbo, and shows that with the turbo that
level of performance can be achieved with only five
active cores.

Fig. 1. Turbo effect on a finite difference kernel
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4) Hyperthreading: Hyperthreading allows to
run more than one flow of instructions in a core,

thus allowing a higher throughput, possibly at the
expense of single-thread performance. We can use
our test code to observe the phenomenon. The
reported frequency should no longer be valid, since
the number of cycles for a given sequence of
instructions will be affected by the other thread. The
results for two threads sharing a core are as follow.

---------------- ----------------
0 1
---------------- ----------------

vfma: 1867 MHz vfma: 1900 MHz
vfmadep: 3000 MHz vfmadep: 3000 MHz
vshift: 1667 MHz vshift: 1667 MHz
vpaddd: 1633 MHz vpaddd: 1667 MHz
vmulpd: 1867 MHz vmulpd: 1900 MHz

vmulpd128: 2067 MHz vmulpd128: 2067 MHz
mulpd: 2067 MHz mulpd: 2067 MHz

The vshift case is quite obvious: since the
test fill up the only available pipeline, each case
only observe about half the “available” frequency
- that is, each copy takes twice as long. Or, we
do twice as much work in the measured amount
of time. We need to sum the computed frequency
to obtain the effective frequency. Recall now that
the vfma test only fill the pipelines to 4/5, that
is 20% of the instruction slots are unused by the
instruction flow. If the vfma was behaving like
the vshift test, we would measure an apparent
frequency of only 1.5 GHz, summing to 3.0 GHz.
But the sum (each half rounded to 33 MHz) is 3767
MHz - or about 5/4 of 3000 MHz (with rounding
approximation). The empty available slots of one
thread are now fully filled by the other thread, so no
slots are unused. By utilizing the hyperthreading, we
have made the processor slightly more efficient. It
is much more obvious for the vfmadep test, where
the observed frequency is 3 GHz on both thread, for
no loss compared to the single-thread case. In that
instance, as each instruction flow only fills 20% of
the instruction slots, the second one execute for free
in the remaining slots. The efficiency is effectively
doubled.

V. COMPILER BEHAVIOR AND ASSEMBLY
OUTPUT

In this section, we will study how to ensure
the compiler is targeting the preferred micro-
architecture. We will then study how to check that



an assembly code (output from the compiler or
disassembled by a specific tool or a debugger) is
indeed matched to the micro-architecture. Please
note that only a superficial view of each compiler
is given, and the compiler documentation should be
used as reference for the exact behavior.

A. Compiler behavior

High-performance computing requires perfor-
mance and therefore tuning the code to the ar-
chitecture. However, most code is destined to run
on a large number of systems of varying micro-
architectures: system code, common libraries from
the operating system, many ISV codes. As a result,
most compilers target a subset of common capa-
bility among several micro-architectures, so as to
produce a code that will run anywhere. On the x86-
64 architecture, this means only SSE and SSE2
in addition to the basic micro-architecture. Most
other instructions, including all AVX flavors, are
out-of-bounds as they are not universally available.
Even if the underlying micro-architecture supports
some instructions, some specific model may not.
For instance, a low-end low-power CPU such as
the Intel R© Celeron R© Processor 1007U is based
on the Ivy Bridge micro-architecture, but it doesn’t
support any AVX instructions or the encryption-
oriented AES instructions. As a result, the compiler
must be explicitly told to use the newer instructions.

1) Intel Compiler: The Intel compiler (in version
15.0 at the time this is written) default to limiting the
capability to SSE2. There is several way to specify
how to generate code, depending on how much
tuning and backward compatibility is required. The
most commons are the -ax, -x and -march &
-mtune options. The following are the one-line
description from the Intel documentation.
-ax Tells the compiler to generate multiple,

feature-specific auto-dispatch code paths
for Intel processors if there is a perfor-
mance benefit.

-x Tells the compiler which processor features
it may target, including which instruction
sets and optimizations it may generate.

-march Tells the compiler to generate code
for processors that support certain fea-
tures.

-mtune Performs optimizations for specific
processors.

The usual way is to use either one of the first
two (-ax or -x), or the last two as a pair. The
easiest solution is probably the special architecture
parameter “native” to -march & -mtune3, which
instructs the compiler to generate and optimize code
for whatever features is supported by the current
CPU. It has the advantage that as long as a code
is compiler on the machine it will run on, it will
always use all available features. In case the compi-
lation and running host are different, then a specific
kind of architecture should be picked, i.e. for AVX2
-march=core-avx2 -mtune=core-avx2.

2) GNU compiler: Recent GNU compilers “gcc”
offer a similar interface to the Intel compiler for
-march & -mtune, and also support the special
“native” architecture. It does not have the -ax or
-x options, but it offers a large set of instruction
set-specific switches, such as -mavx, -mavx2 or
-maes.

3) CLANG compiler: Recent LLVM-based com-
pilers “clang” supports a similar interface to
the GNU compiler, including the “native” micro-
architecture on x86-64.

B. Identifying assembly

It is sometimes useful to assert what kind of
code is the binary made of. It can be because the
code is part of a binary-only librarie, or because
it is not known how the code was compiled, or
simply to check the behavior of the compiler and
whether the code was properly vectorized or not. It
is therefore useful to be able to identify the most
common floating-point operations in their various
flavors, including the obsolete x87 FPU.

1) The x87 FPU: The x87 FPU does not make
use of numbered registers, but is stack-based. Most
instructions are readily identifiable, as they will
reference this special FPU hardware stack. The
name of the stack in assembly language is %st,
with a possible suffix indicating an element not at
the top of the stack such as %st(4). So if the code
makes use of the x87 FPU (which is to be avoided),
then the assembly code will show instructions such
as fmul %st(4),%st (a multiplication) or the

3i.e. -march=native -mtune=native



very common fxch %st(1) (exchanging the top
of the stack with another element).

2) SIMD instructions: SSE, AVX: There is two
things to identify when checking SIMD assembly
code: the width of the registers (scalar i.e. non-
vectorized, 128 bits, 256 bits) and the encoding
(SSE or AVX). Floating-point SIMD instructions in
assembly are made according to a simple pattern:

1) An optional prefix v indicating AVX encoding;
2) The mnemonic indicating the type of operation

(mul, add, ...);
3) Two single-letter suffixes indicating first scalar

(s) or vectorized (“packed”, in the Intel doc-
umentation) (p), and second the type of data
(single precision s or double precision d).

So the instruction mulss is a SSE-encoded
(no v prefix) scalar single-precision multiplication,
while vaddpd is an AVX-encoded packed/vector-
ized double-precision addition. In this second case,
the instruction mnemonic doesn’t specify the width
of the registers (128 or 256). 128 bits registers (SSE
or AVX-encoded) are identified by the prefix xmm,
whereas 256 bits registers are identified by the prefix
ymm. Whenever an instruction is scalar, registers
normally use the xmm prefix. SSE-encoded instruc-
tions cannot use ymm registers. And additional clue
is that common binary operations have two registers
in SSE, but three in AVX.

So for instance, a double-precision addition might
be:
addsd %xmm0,%xmm1 SSE-encoded scalar addi-

tion;
addpd %xmm0,%xmm1 SSE-encoded 128 bits

(2× 64) addition;
vaddsd %xmm0,%xmm1,%xmm1 AVX-encoded

scalar addition;
vaddpd %xmm0,%xmm1,%xmm1 AVX-encoded

128 (2× 64) bits addition;
vaddpd %ymm0,%ymm1,%ymm1 AVX-encoded

256 (4× 64) bits addition;

VI. CONCLUSION

In this paper, we investigate what is the theoret-
ical peak in floating-point operations of a compute
node. We note that it is no longer a single number,
but the actual value must take into account the
instruction set and its encoding, and also the level
of parallelism and the specific of the CPU such as

frequency scaling. Since the implementations detail
of the actual binary is involved, the compiler and its
options will play an important role in constraining
the available peak. The binary code must be suited
to the underlying architecture.

In the future, it will be necessary to take into ac-
count the upcoming AVX-512 instruction set [3][4]
which again double the vector width. Fortunately,
the encoding is compatible with AVX and FMA, so
it should only add two entries in our tables, for sin-
gle and double precision using the new vector width
- doubling the peak against the current AVX+FMA
leader.

GLOSSARY

AVX The third SIMD instruction set for the x86
architecture. It uses 256 bits wide registers. The
original AVX instruction set only support float-
ing point operations. AVX2 introduced integer
operations. 2, 9, 10

AVX2 First extension to the AVX instruction set,
adding integer operations. 3, 9

CPUID instruction The CPUID instruction is a
mechanism for x86 and x86-64 architectures
by which software can tell among other things
which instruction sets are supported in a par-
ticular CPU. 3

dependency chain A sequence of sequentially de-
pendent instructions. If an instruction I1 writes
to a register RA and a later instruction I2 reads
register RA, then I2 is said to be dependent
on I1. If I2 writes to RB, and I3 reads RB,
then I3 is dependent on I2, and I1-I2-I3 forms
a dependency chain. The total latency for a
dependency chain is never lower than the sum
of all the latencies for all the instructions in it.
6

encoding scheme The encoding is the binary rep-
resentation of an instruction, directly usable
by the processor. An encoding scheme is the
description of how to encode the various in-
structions. The AVX encoding scheme differs
from the SSE encoding scheme, as it adds some
extra bytes to enable the use of wider registers
and extra operands. 3

Floating-Point Unit The computation unit respon-
sible for floating-point operations. It can be
composed of multiple execution units, each of



which are sometimes also called FPU. It can
be scalar (such as the x87 FPU, or SIMD (such
as SSE or AVX). 2, 10

FPU Floating-Point Unit. 2
instruction set A group of instructions that are

available - or not - in a micro-architecture. The
instruction set with the mandatory instructions
is the base instruction set, such as x86 or its
64 bits variant x86-64. Additional instruction
sets such as x87, SSE or AVX provide addi-
tional instructions to expand the capability of
a processor. 2, 3, 9, 10

micro-architecture The details of how an architec-
ture is implemented in a given micro-processor.
1

SSE The second SIMD instruction set for the x86
architecture. It uses 128 bits wide registers.
The original SSE instruction set only sup-
port integer and single-precision floating point
operations. SSE2 introduced double-precision
floating-point operations. Both SSE and SSE2
are required in x86-64 (64 bits) processors. 9,
10

SSE2 First extension to the SSE instruction set,
adding double-precision floating point opera-
tions. 2, 10

x87 It is the common abbreviation for the first, now
obsolete, floating-point extension to the x86
architecture. See e.g. [10] for details. 2, 10
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